题目内容
(2012•烟台一模)定义在R上的函数f(x)=ax3+bx2+cx+3同时满足以下条件:
①f(x)在(0,1)上是减函数,在(1,+∞)上是增函数;
②f′(x)是偶函数;
③f(x)在x=0处的切线与直线y=x+2垂直.
(Ⅰ)求函数y=f(x)的解析式;
(Ⅱ)设g(x)=4lnx-m,若存在x∈[1,e],使g(x)<f′(x),求实数m的取值范围.
①f(x)在(0,1)上是减函数,在(1,+∞)上是增函数;
②f′(x)是偶函数;
③f(x)在x=0处的切线与直线y=x+2垂直.
(Ⅰ)求函数y=f(x)的解析式;
(Ⅱ)设g(x)=4lnx-m,若存在x∈[1,e],使g(x)<f′(x),求实数m的取值范围.
分析:(Ⅰ)求出f′(x)=3ax2+2bx+c,由f(x)在(0,1)上是减函数,在(1,+∞)上是增函数,得到f′(1)=3a+2b+c=0,再由函数的奇偶性和切线方程能够求出函数y=f(x)的解析式.
(Ⅱ)若存在x∈[1,e],使4lnx-m<x2-1,即存在x∈[1,e],使m>4lnx-x2+1,由此入手,结合题设条件,能够求出实数m的取值范围.
(Ⅱ)若存在x∈[1,e],使4lnx-m<x2-1,即存在x∈[1,e],使m>4lnx-x2+1,由此入手,结合题设条件,能够求出实数m的取值范围.
解答:解:(Ⅰ)f′(x)=3ax2+2bx+c
∵f(x)在(0,1)上是减函数,在(1,+∞)上是增函数,
∴f′(1)=3a+2b+c=0…①…(1分)
由f′(x)是偶函数得:b=0②…(2分)
又f(x)在x=0处的切线与直线y=x+2垂直,f′(0)=c=-1③…(3分)
由①②③得:a=
,b=0,c=-1,
即f(x)=
x3-x+3…(4分)
(Ⅱ)由已知得:
若存在x∈[1,e],使4lnx-m<x2-1,即存在x∈[1,e],使m>4lnx-x2+1
设h(x)=4lnx-x2+1
m>hmin,对h(x)求导,导数在(0,
)大于零,(
,e)小于零,即h(x)先递增再递减,
当x=
.m取最大值+∞,x=e 时,m取最小值5-e2.
∴实数m的取值范围是(5-e2,+∞).
∵f(x)在(0,1)上是减函数,在(1,+∞)上是增函数,
∴f′(1)=3a+2b+c=0…①…(1分)
由f′(x)是偶函数得:b=0②…(2分)
又f(x)在x=0处的切线与直线y=x+2垂直,f′(0)=c=-1③…(3分)
由①②③得:a=
1 |
3 |
即f(x)=
1 |
3 |
(Ⅱ)由已知得:
若存在x∈[1,e],使4lnx-m<x2-1,即存在x∈[1,e],使m>4lnx-x2+1
设h(x)=4lnx-x2+1
m>hmin,对h(x)求导,导数在(0,
2 |
2 |
当x=
2 |
∴实数m的取值范围是(5-e2,+∞).
点评:本题考查函数解析式的求法和求实数的取值范围,考查化归与转化、分类与整合的数学思想,培养学生的抽象概括能力、推理论证能力、运算求解能力和创新意识.
练习册系列答案
相关题目