题目内容
(2012•烟台一模)已知f(x)是定义在R上的奇函数,当x≥0时f(x)=3x+m(m为常数),则f(-log35)的值为( )
分析:由题设条件可先由函数在R上是奇函数求出参数m的值,求函数函数的解板式,再由奇函数的性质得到f(-log35)=-f(log35)代入解析式即可求得所求的函数值,选出正确选项
解答:解:由题意,f(x)是定义在R上的奇函数,当x≥0时f(x)=3x+m(m为常数),
∴f(0)=30+m=0,解得m=-1,故有x≥0时f(x)=3x-1
∴f(-log35)=-f(log35)=-(3log35-1)=-4
故选B
∴f(0)=30+m=0,解得m=-1,故有x≥0时f(x)=3x-1
∴f(-log35)=-f(log35)=-(3log35-1)=-4
故选B
点评:本题考查函数奇偶性质,解题的关键是利用f(0)=0求出参数m的值,再利用性质转化求值,本题考查了转化的思想,方程的思想.
练习册系列答案
相关题目