ÌâÄ¿ÄÚÈÝ
ÒÑÖªº¯Êýf(x)=
x2+(a-3)x+lnx£®
£¨¢ñ£©Èôº¯Êýf£¨x£©ÊǶ¨ÒåÓòÉϵĵ¥µ÷º¯Êý£¬ÇóʵÊýaµÄ×îСֵ£»
£¨¢ò£©·½³Ìf(x)=(
-a)x2+(a-2)x+2lnx£®ÓÐÁ½¸ö²»Í¬µÄʵÊý½â£¬ÇóʵÊýaµÄÈ¡Öµ·¶Î§£»
£¨¢ó£©ÔÚº¯Êýf£¨x£©µÄͼÏóÉÏÊÇ·ñ´æÔÚ²»Í¬Á½µãA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Ï߶ÎABµÄÖеãµÄºá×ø±êΪx0£¬ÓÐf¡ä£¨x0£©=
³ÉÁ¢£¿Èô´æÔÚ£¬ÇëÇó³öx0µÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
1 |
2 |
£¨¢ñ£©Èôº¯Êýf£¨x£©ÊǶ¨ÒåÓòÉϵĵ¥µ÷º¯Êý£¬ÇóʵÊýaµÄ×îСֵ£»
£¨¢ò£©·½³Ìf(x)=(
1 |
2 |
£¨¢ó£©ÔÚº¯Êýf£¨x£©µÄͼÏóÉÏÊÇ·ñ´æÔÚ²»Í¬Á½µãA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Ï߶ÎABµÄÖеãµÄºá×ø±êΪx0£¬ÓÐf¡ä£¨x0£©=
y1-y2 |
x1-x2 |
·ÖÎö£º£¨I£©Çó³öµ¼º¯Êý£¬Áîµ¼º¯Êý´óÓÚµÈÓÚ0ºã³ÉÁ¢»òСÓÚµÈÓÚ0ºã³ÉÁ¢£¬·ÖÀë³öa£¬ÀûÓûù±¾²»µÈʽÇó³öaµÄ·¶Î§£¬´Ó¶øÇó³öaµÄ×îСֵ£®
£¨¢ò£©ÓÉf(x)=(
-a)x2+(a-2)x+2lnx=0£¬µÃa=
£¬Áîr£¨x£©=
£¬ÀûÓõ¼ÊýÑо¿Æäµ¥µ÷ÐÔ¼°×îÖµ£¬´Ó¶øµÃ³öҪʹy=
Óëy=aÓÐÁ½¸ö²»Í¬µÄ½»µã£¬Çó³öʵÊýaµÄÈ¡Öµ·¶Î§£»
£¨III£©ÀûÓÃÁ½µãÁ¬ÏßµÄбÂʹ«Ê½Çó³ök²¢ÇÒ»¯¼òk£¬Çó³öf¡ä£¨x0£©Áгö·½³Ì£¬Í¨¹ý»»Ôª¹¹Ôìк¯Êý£¬Í¨¹ýµ¼ÊýÅжϳöº¯ÊýµÄµ¥µ÷ÐÔ£¬Çó³ö×îÖµ£¬µÃµ½Ã¬¶Ü£®
£¨¢ò£©ÓÉf(x)=(
1 |
2 |
lnx+x |
x2 |
lnx+x |
x2 |
lnx+x |
x2 |
£¨III£©ÀûÓÃÁ½µãÁ¬ÏßµÄбÂʹ«Ê½Çó³ök²¢ÇÒ»¯¼òk£¬Çó³öf¡ä£¨x0£©Áгö·½³Ì£¬Í¨¹ý»»Ôª¹¹Ôìк¯Êý£¬Í¨¹ýµ¼ÊýÅжϳöº¯ÊýµÄµ¥µ÷ÐÔ£¬Çó³ö×îÖµ£¬µÃµ½Ã¬¶Ü£®
½â´ð£º½â£º£¨¢ñ£©f/(x)=x+a-3+
(x£¾0)£®£¨2·Ö£©
Èôº¯Êýf£¨x£©ÔÚ£¨0£¬+¡Þ£©ÉϵÝÔö£¬
Ôòf¡ä£¨x£©¡Ý0¶Ôx£¾0ºã³ÉÁ¢£¬¼´a¡Ý-(x+
)+3¶Ôx£¾0ºã³ÉÁ¢£¬
¶øµ±x£¾0ʱ£¬-(x+
)+3¡Ü-2+3=1£®
¡àa¡Ý1£®
Èôº¯Êýf£¨x£©ÔÚ£¨0£¬+¡Þ£©Éϵݼõ£¬
Ôòf¡ä£¨x£©¡Ü0¶Ôx£¾0ºã³ÉÁ¢£¬¼´a¡Ü-(x+
)+3¶Ôx£¾0ºã³ÉÁ¢£¬
ÕâÊDz»¿ÉÄܵģ®
×ÛÉÏ£¬a¡Ý1£®
aµÄ×îСֵΪ1£®£¨6·Ö£©
£¨¢ò£©ÓÉf(x)=(
-a)x2+(a-2)x+2lnx=0£¬
µÃ£º(a-
)x2+(2-a)x=2lnx£¬
¼´£ºa=
£¬Áîr£¨x£©=
£¬r¡ä£¨x£©=
=
µÃ1-x-2lnx=0µÄ¸ùΪ1£¬
ËùÒÔµ±0£¼x£¼1ʱ£¬r¡ä£¨x£©£¾0£¬Ôòr£¨x£©µ¥µ÷µÝÔö£¬
µ±x£¾1ʱ£¬r¡ä£¨x£©£¼0£¬Ôòr£¨x£©µ¥µ÷µÝ¼õ£¬
ËùÒÔr£¨x£©ÔÚx=1´¦È¡µ½×î´óÖµr£¨1£©=1£¬
ÓÖx¡ú0ʱr£¨x£©¡ú0£¬ÓÖx¡ú+¡Þʱ£¬r£¨x£©¡ú0£¬
ËùÒÔҪʹy=
Óëy=aÓÐÁ½¸ö²»Í¬µÄ½»µã£¬ÔòÓÐ 0£¼a£¼1 ¡8·Ö
£¨III£©¼ÙÉè´æÔÚ£¬²»·ÁÉè0£¼x1£¼x2.k=
=
=x0+(a-3)+
£®£¨9·Ö£©
f/(x0)=x0+(a-3)+
£®
Èôk=f¡ä£¨x0£©£¬Ôò
=
£¬¼´
=
£¬¼´ln
=
£®£¨*£©£¨12·Ö£©
Áît=
£¬u(t)=lnt-
£¨0£¼t£¼1£©£¬
Ôòu¡ä(t)=
£¾0£®¡àu£¨t£©ÔÚ0£¼t£¼1ÉÏÊÇÔöº¯Êý£¬
¡àu£¨t£©£¼u£¨1£©=0£¬
¡à£¨*£©Ê½²»³ÉÁ¢£¬Óë¼ÙÉèì¶Ü£®¡àk¡Ùf¡ä£¨x0£©£®
Òò´Ë£¬Âú×ãÌõ¼þµÄx0²»´æÔÚ£®£¨16·Ö£©
1 |
x |
Èôº¯Êýf£¨x£©ÔÚ£¨0£¬+¡Þ£©ÉϵÝÔö£¬
Ôòf¡ä£¨x£©¡Ý0¶Ôx£¾0ºã³ÉÁ¢£¬¼´a¡Ý-(x+
1 |
x |
¶øµ±x£¾0ʱ£¬-(x+
1 |
x |
¡àa¡Ý1£®
Èôº¯Êýf£¨x£©ÔÚ£¨0£¬+¡Þ£©Éϵݼõ£¬
Ôòf¡ä£¨x£©¡Ü0¶Ôx£¾0ºã³ÉÁ¢£¬¼´a¡Ü-(x+
1 |
x |
ÕâÊDz»¿ÉÄܵģ®
×ÛÉÏ£¬a¡Ý1£®
aµÄ×îСֵΪ1£®£¨6·Ö£©
£¨¢ò£©ÓÉf(x)=(
1 |
2 |
µÃ£º(a-
1 |
2 |
¼´£ºa=
lnx+x |
x2 |
lnx+x |
x2 |
(
| ||
x4 |
1-x-2lnx |
x3 |
µÃ1-x-2lnx=0µÄ¸ùΪ1£¬
ËùÒÔµ±0£¼x£¼1ʱ£¬r¡ä£¨x£©£¾0£¬Ôòr£¨x£©µ¥µ÷µÝÔö£¬
µ±x£¾1ʱ£¬r¡ä£¨x£©£¼0£¬Ôòr£¨x£©µ¥µ÷µÝ¼õ£¬
ËùÒÔr£¨x£©ÔÚx=1´¦È¡µ½×î´óÖµr£¨1£©=1£¬
ÓÖx¡ú0ʱr£¨x£©¡ú0£¬ÓÖx¡ú+¡Þʱ£¬r£¨x£©¡ú0£¬
ËùÒÔҪʹy=
lnx+x |
x2 |
£¨III£©¼ÙÉè´æÔÚ£¬²»·ÁÉè0£¼x1£¼x2.k=
f(x1)-f(x2) |
x1-x2 |
| ||||||||
x1-x2 |
ln
| ||
x1-x2 |
f/(x0)=x0+(a-3)+
1 |
x0 |
Èôk=f¡ä£¨x0£©£¬Ôò
ln
| ||
x1-x2 |
1 |
x0 |
ln
| ||
x1-x2 |
2 |
x1+x2 |
x1 |
x2 |
2
| ||
|
Áît=
x1 |
x2 |
2t-2 |
t+1 |
Ôòu¡ä(t)=
(t-1)2 |
t(t+1)2 |
¡àu£¨t£©£¼u£¨1£©=0£¬
¡à£¨*£©Ê½²»³ÉÁ¢£¬Óë¼ÙÉèì¶Ü£®¡àk¡Ùf¡ä£¨x0£©£®
Òò´Ë£¬Âú×ãÌõ¼þµÄx0²»´æÔÚ£®£¨16·Ö£©
µãÆÀ£º±¾Ð¡ÌâÖ÷Òª¿¼²éÀûÓõ¼ÊýÑо¿º¯ÊýµÄµ¥µ÷ÐÔ¡¢ÀûÓõ¼ÊýÇó±ÕÇø¼äÉϺ¯ÊýµÄ×îÖµ¡¢´æÔÚÐÔÎÊÌâµÈ»ù´¡ÖªÊ¶£¬¿¼²éÔËËãÇó½âÄÜÁ¦£¬¿¼²é»¯¹éÓëת»¯Ë¼Ï룮½â¾öÊÇ·ñ´æÔÚÕâÖÖ̽Ë÷ÐÔµÄÎÊÌ⣬³£¼ÙÉè´æÔÚÈ¥Çó£¬ÈôÇó³öÔò´æÔÚ£¬ÈôÇó²»³öÔò²»´æÔÚ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿