题目内容

定义在D上的函数f(x)如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.已知函数f(x)=
1-m•2x1+m•2x

(1)m=1时,求函数f(x)在(-∞,0)上的值域,并判断f(x)在(-∞,0)上是否为有界函数,请说明理由;
(2)若函数f(x)在[0,1]上是以3为上界的有界函数,求m的取值范围.
分析:(1)当m=1时,f(x)=
1-2x
1+2x
=
2
1+2x
-1
,易求值域f(x)∈(0,1),并判断为f(x)在(-∞,0)上是为有界函数.
(2)若函数f(x)在[0,1]上是以3为上界的有界函数,则有|f(x)|≤3在[0,1]上恒成立.转化为不等式(组)恒成立问题.
解答:解:(1)当m=1时,f(x)=
1-2x
1+2x
=
2
1+2x
-1

∵x<0,∴0<2x<1,
∴f(x)∈(0,1),满足|f(x)|≤1,
f(x)在(-∞,0)上是为有界函数.
(2)若函数f(x)在[0,1]上是以3为上界的有界函数,则有|f(x)|≤3在[0,1]上恒成立.
∴-3≤f(x)≤3,即-3≤
1-m•2x
1+m•2x
≤3,
1-m•2x
1+m•2x
-3≤0
1-m•2x
1+m•2x
+3≥0
化简得
m•2x+2+2
1+m•2x
≥0
m•2x+1+4
1+m•2x
≥0
,即
m<-
1
2x
或m≥-
 1
2x+1
m≤-
2
2x
或m>-
1
2x


上面不等式组对一切x∈[0,1]都成立,
故取
m<-1或m≥-
1
4
m≤-2或m>-
1
2
,即m≤-2或m≥-
1
4
点评:本题主要考查函数值域求解,恒成立问题.考查转化、计算能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网