题目内容
设函数y=f(x)在(a,b)上的导函数为f′(x),f′(x)在(a,b)上的导函数为f″(x),若在a,b)上,f″(x)<0恒成立,则称函数函数f(x)在(a,b)上为“凸函数”.已知当m≤2时,在(-1,2)上是“凸函数”.则f(x)在(-1,2)上( )A.既有极大值,也有极小值
B.既有极大值,也有最小值
C.有极大值,没有极小值
D.没有极大值,也没有极小值
【答案】分析:根据函数恒成立,得出m的值,利用函数单调性 得出结果.
解答:解:因,f″(x)=x-m<0对于x∈(-1,2)恒成立.
∴m>(x)max=2,又当m=2时也成立,有m≥2.而m≤2,∴m=2.
于是,由f′(x)=0x=或x=2+(舍去),
f(x)(-1,2-)上递增,在(2-,2)上递减,
只有C正确.
故选C
点评:本题主要考查导数和函数知识及利用导数判断函数单调性,属于基础知识,基本运算的考查.
解答:解:因,f″(x)=x-m<0对于x∈(-1,2)恒成立.
∴m>(x)max=2,又当m=2时也成立,有m≥2.而m≤2,∴m=2.
于是,由f′(x)=0x=或x=2+(舍去),
f(x)(-1,2-)上递增,在(2-,2)上递减,
只有C正确.
故选C
点评:本题主要考查导数和函数知识及利用导数判断函数单调性,属于基础知识,基本运算的考查.
练习册系列答案
相关题目
设函数y=f(x)在(-∞,+∞)内有定义.对于给定的正数K,定义函数 fk(x)=
,取函数f(x)=2-x-e-x.若对任意的x∈(+∞,-∞),恒有fk(x)=f(x),则( )
|
A、K的最大值为2 |
B、K的最小值为2 |
C、K的最大值为1 |
D、K的最小值为1 |