题目内容

设a为实数,函数f(x)=2x2+(x-a)|x-a|.
(1)若f(0)≥1,求a的取值范围;
(2)求f(x)的最小值;
(3)设函数h(x)=f(x),x∈(a,+∞),求不等式h(x)≥1的解集.
(1)若f(0)≥1,则-a|a|≥1⇒
a<0
a2≥1
⇒a≤-1
(2)当x≥a时,f(x)=3x2-2ax+a2,∴f(x)min=
f(a),a≥0
f(
a
3
),a<0
=
2a2,a≥0
2
3
a2,a<0

如图所示:

当x≤a时,f(x)=x2+2ax-a2
f(x)min=
f(-a),a≥0
f(a),a<0
=
-2a2,a≥0
2a2,a<0


综上所述:f(x)min=
-2a2,a≥0
2
3
a2a<0

(3)x∈(a,+∞)时,h(x)≥1,
得3x2-2ax+a2-1≥0,△=4a2-12(a2-1)=12-8a2
当a≤-
6
2
或a≥
6
2
时,△≤0,x∈(a,+∞);
当-
6
2
<a<
6
2
时,△>0,得:
(x-
a-
3-2a2
3
)(x-
a+
3-2a2
3
)≥0
x>a

x≤
a-
3-2a2
3
或x≥
a+
3-2a2
3
x>a

综上可得,
当a∈(-∞,-
6
2
)∪(
6
2
,+∞)时,不等式组的解集为(a,+∞);
当a∈(-
6
2
,-
2
2
)时,不等式组的解集为(a,
a-
3-2a2
3
]∪[
a+
3-2a2
3
,+∞);
当a∈[-
2
2
2
2
]时,不等式组的解集为[
a+
3-2a2
3
,+∞).
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网