题目内容
【题目】已知函数。
(1)若函数在处的切线垂直于轴,求实数的值;
(2)在(1)的条件下,求函数的单调区间;
(3)若时,恒成立,求实数的取值范围.
【答案】(Ⅰ);(Ⅱ)的单调递增区间为,单调递减区间为;(Ⅲ)实数的取值范围为.
【解析】
试题此题考查导数求解的综合问题(Ⅰ)应用导数的几何意义,首先求函数的导数,以及在切点处的导数,然后根据,求解参数;(Ⅱ)利用导数求函数的单调性的方法,第一步,根据上一问得到函数的导数,将导数化简,第二步,求解,和的不等式,就是对应函数的单调区间,注意函数的定义域;(Ⅲ)处理此类不等式恒成立的问题,有两种方程,第一种,反解参数,转化为求函数的最小值,同样是求函数的导数,求函数的单调区间,确定最小值;第二种,转化为求,所以方法就是求函数的导数,讨论函数的极值点的存在问题,确定单调性,求函数的最小值大于0.
试题解析:(Ⅰ).
由题意得,即4分
(Ⅱ)时,,定义域为,
当或时,,
当时,,
故的单调递增区间为,单调递减区间为. 8分
(Ⅲ)解法一:由,得在时恒成立,
令,则-10
令,则
所以在为增函数,.
故,故在为增函数.,
所以,即实数的取值范围为. 12分
解法二:
令,则,
(Ⅰ)当,即时,恒成立,
因为,所以在上单调递增,
,即,所以;
(Ⅱ)当,即时,恒成立,
因为,所以在上单调递增,
,即,所以;
(Ⅲ)当,即或时,
方程有两个实数根
若,两个根,
当时,,所以在上单调递增,
则,即,所以;
若,的两个根,
因为,且在是连续不断的函数
所以总存在,使得,不满足题意.
综上,实数的取值范围为.
练习册系列答案
相关题目