题目内容
设数列{an},{bn}都是正项等比数列,Sn,Tn分别为数列{lgan}与{lgbn}的前n项和,且![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190003015750672/SYS201310241900030157506013_ST/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190003015750672/SYS201310241900030157506013_ST/1.png)
【答案】分析:设{an}的公比为q,{bn}的公比为p,则数列{lgan}是等差数列,公差为lgq,{lgbn}是等差数列,公差为lgp.求出Sn和Tn,由于
=
,根据
=
=
=
,运算求得结果.
解答:解:设正项等比数列{an}的公比为q,设正项等比数列{bn}的公比为p,则数列{lgan}是等差数列,公差为lgq,{lgbn}是等差数列,公差为lgp.
故 Sn =n•lga1+
,同理可得 Tn =n•lgb1+
.
又
=
,
∴
=
=
=
=
,
故答案为
.
点评:本题主要考查等比数列的定义和性质,等比数列的通项公式,对数的运算性质以及等差数列的前n项和公式的应用,属于中档题.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190003015750672/SYS201310241900030157506013_DA/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190003015750672/SYS201310241900030157506013_DA/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190003015750672/SYS201310241900030157506013_DA/2.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190003015750672/SYS201310241900030157506013_DA/3.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190003015750672/SYS201310241900030157506013_DA/4.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190003015750672/SYS201310241900030157506013_DA/5.png)
解答:解:设正项等比数列{an}的公比为q,设正项等比数列{bn}的公比为p,则数列{lgan}是等差数列,公差为lgq,{lgbn}是等差数列,公差为lgp.
故 Sn =n•lga1+
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190003015750672/SYS201310241900030157506013_DA/6.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190003015750672/SYS201310241900030157506013_DA/7.png)
又
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190003015750672/SYS201310241900030157506013_DA/8.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190003015750672/SYS201310241900030157506013_DA/9.png)
∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190003015750672/SYS201310241900030157506013_DA/10.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190003015750672/SYS201310241900030157506013_DA/11.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190003015750672/SYS201310241900030157506013_DA/12.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190003015750672/SYS201310241900030157506013_DA/13.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190003015750672/SYS201310241900030157506013_DA/14.png)
故答案为
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190003015750672/SYS201310241900030157506013_DA/15.png)
点评:本题主要考查等比数列的定义和性质,等比数列的通项公式,对数的运算性质以及等差数列的前n项和公式的应用,属于中档题.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目