题目内容
设数列{an}的前n项和为Sn,已知a1=1,a2=6,a3=11,且(5n-8)Sn+1-(5n+2)Sn=An+B,n=1,2,3…,其中A,B为常数.数列{an}的通项公式为
an=5n-4
an=5n-4
.分析:利用s1,s2,s3,结合(5n-8)Sn+1-(5n+2)Sn=An+B,推出方程组直接求A与B的值.化简(5n-8)Sn+1-(5n+2)Sn=An+B,得到(5n-3)sn+2-(5n+7)sn+1=-20n-28,然后利用等差数列的性质,证明数列{an}为等差数列.由此能求出数列{an}的通项公式.
解答:解:由已知得s1=a1=1,s2=a1+a2=7,s3=a1+a2+a3=18
∴(5n-8)sn+1-(5n+2)sn=-20n-8①
所以(5n-3)sn+2-(5n+7)sn+1=-20n-28②
②-①得(5n-3)sn+2-(10n-1)sn+1+(5n+2)sn=-20③
所以(5n+2)sn+3-(10n+9)sn+2+(5n+7)sn+1=-20④
④-③得(5n+2)sn+3-(15n+6)sn+2+(15n+6)sn+1-(5n+2)sn=0
因为an+1=sn+1-sn,所以(5n+2)an+3-(10n+4)an+2+(5n+2)an+1=0
又因为5n+2≠0,所以an+3-2an+2+an+1=0,即an+3-an+2=an+2-an+1,n≥1,
又a3-a2=a2-a1=5.∴数列{an}为等差数列,公差为5.
∴an=a1+(n-1)d
=1+5(n-1)
=5n-4.
故答案为:5n-4.
|
∴(5n-8)sn+1-(5n+2)sn=-20n-8①
所以(5n-3)sn+2-(5n+7)sn+1=-20n-28②
②-①得(5n-3)sn+2-(10n-1)sn+1+(5n+2)sn=-20③
所以(5n+2)sn+3-(10n+9)sn+2+(5n+7)sn+1=-20④
④-③得(5n+2)sn+3-(15n+6)sn+2+(15n+6)sn+1-(5n+2)sn=0
因为an+1=sn+1-sn,所以(5n+2)an+3-(10n+4)an+2+(5n+2)an+1=0
又因为5n+2≠0,所以an+3-2an+2+an+1=0,即an+3-an+2=an+2-an+1,n≥1,
又a3-a2=a2-a1=5.∴数列{an}为等差数列,公差为5.
∴an=a1+(n-1)d
=1+5(n-1)
=5n-4.
故答案为:5n-4.
点评:本题考查数列{an}的通项公式的求法是,考查数列中系数的求法,考查计算能力,注意验证数列的首项是否满足数列是等差数列.解本题的关键是理解恒等式
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目