ÌâÄ¿ÄÚÈÝ
ÉèÊýÁÐ{an}Âú×ãa1=0£¬4an+1=4an+24an+1 |
4an+1 |
£¨1£©ÊÔÅжÏÊýÁÐ{bn}ÊÇ·ñΪµÈ²îÊýÁУ¿²¢ÇóÊýÁÐ{bn}µÄͨÏʽ£»
£¨2£©ÁîTn=
b1¡Áb3¡Áb5¡Á¡¡Áb(2n-1) |
b2¡Áb4¡Áb6¡Á¡b2n |
bn+1 |
2 |
£¨3£©±È½Ïbnbn+1Óëbn+1bnµÄ´óС£®
·ÖÎö£º£¨1£©ÀûÓÃÒÑÖªÅä´Õ³ö4an+1+1¡¢4an+1¼´bn+1¡¢bnµÄÐÎʽ£¬È»ºó¸ù¾ÝµÈ²îÊýÁеĶ¨ÒåÇó½â£»
£¨2£©¹¹ÔìÊýÁÐcn=Tn
£¬ÔÚ£¨1£©µÄ»ù´¡ÉÏ£¬Çó³öcn±í´ïʽ£¬ÀûÓÃcnµÄµ¥µ÷ÐÔÇó³öcnµÄ×î´óÖµ£¬´Ó¶øת»¯Îª²»µÈʽÇó½âÎÊÌ⣬½ø¶øÍê³É¶ÔaµÄ̽Ë÷£®
£¨3£©¹¹Ô캯Êýf(x)=
£¬ÀûÓú¯ÊýµÄµ¥µ÷ÐÔ·Ön¡Ü2ºÍn¡Ý3Á½ÖÖÇé¿ö̽Ë÷£®
£¨2£©¹¹ÔìÊýÁÐcn=Tn
bn+1 |
£¨3£©¹¹Ô캯Êýf(x)=
lnx |
x |
½â´ð£º½â£º£¨1£©ÓÉÒÑÖªµÃan+1+
=(an+
)+
+
£¬
¼´4an+1+1=4an+1+2
+1£¬£¨2·Ö£©
ËùÒÔbn+12=bn2+2bn+1£¬¼´bn+1=bn+1£¬
ÓÖb1=1£¬ËùÒÔÊýÁÐ{bn}ΪµÈ²îÊýÁУ¬
ͨÏʽΪbn=n£¨n¡ÊN*£©£®
£¨2£©Áîcn=Tn
£¬
ÓÉTn=
£¬
µÃ
=
=
¡Á
=
=
£¼1
ËùÒÔ£¬ÊýÁÐ{cn}Ϊµ¥µ÷µÝ¼õÊýÁУ¬£¨8·Ö£©
ËùÒÔÊýÁÐ{cn}µÄ×î´óÏîΪc1=
£¬
Èô²»µÈʽTn
£¼
log2(a+1)¶ÔÒ»ÇÐn¡ÊN*¶¼³ÉÁ¢£¬Ö»Ðè
£¼
log2(a+1)£¬
½âµÃa£¾
-1£¬
ËùÒÔaµÄÈ¡Öµ·¶Î§Îª£¨
-1£¬+¡Þ£©£®£¨12·Ö£©
£¨3£©ÎÊÌâ¿Éת»¯Îª±È½Ïnn+1Ó루n+1£©nµÄ´óС£®
É躯Êýf(x)=
£¬ËùÒÔf¡ä(x)=
£®
µ±0£¼x£¼eʱ£¬f'£¨x£©£¾0£»
µ±x£¾eʱ£¬f'£¨x£©£¼0£®ËùÒÔf£¨x£©ÔÚ£¨0£¬e£©ÉÏΪÔöº¯Êý£»ÔÚ£¨e£¬+¡Þ£©ÉÏΪ¼õº¯Êý£®
µ±n=1£¬2ʱ£¬ÏÔÈ»ÓÐnn+1£¼£¨n+1£©n£¬
µ±n¡Ý3ʱ£¬f£¨n£©£¾f£¨n+1£©£¬¼´
£¾
£¬
ËùÒÔ£¨n+1£©lnn£¾nln£¨n+1£©£¬¼´lnnn+1£¾ln£¨n+1£©n£¬
ËùÒÔnn+1£¾£¨n+1£©n£®
×ÛÉÏ£ºµ±n=1£¬2ʱ£¬nn+1£¼£¨n+1£©n£¬¼´bnbn+1£¼bn+1bn£»
µ±n¡Ý3ʱ£¬nn+1£¾£¨n+1£©n¼´bnbn+1£¾bn+1bn£®£¨16·Ö£©
1 |
4 |
1 |
4 |
an+
|
1 |
4 |
¼´4an+1+1=4an+1+2
4an+1 |
ËùÒÔbn+12=bn2+2bn+1£¬¼´bn+1=bn+1£¬
ÓÖb1=1£¬ËùÒÔÊýÁÐ{bn}ΪµÈ²îÊýÁУ¬
ͨÏʽΪbn=n£¨n¡ÊN*£©£®
£¨2£©Áîcn=Tn
bn+1 |
ÓÉTn=
b1¡Áb3¡Áb5¡Á¡Áb(2n-1) |
b2¡Áb4¡Áb6¡Áb2n |
µÃ
cn+1 |
cn |
| ||||
|
2n+1 |
2n+2 |
| ||
|
=
|
|
ËùÒÔ£¬ÊýÁÐ{cn}Ϊµ¥µ÷µÝ¼õÊýÁУ¬£¨8·Ö£©
ËùÒÔÊýÁÐ{cn}µÄ×î´óÏîΪc1=
| ||
2 |
Èô²»µÈʽTn
bn+1 |
2 |
| ||
2 |
2 |
½âµÃa£¾
2 |
ËùÒÔaµÄÈ¡Öµ·¶Î§Îª£¨
2 |
£¨3£©ÎÊÌâ¿Éת»¯Îª±È½Ïnn+1Ó루n+1£©nµÄ´óС£®
É躯Êýf(x)=
lnx |
x |
1-lnx |
x2 |
µ±0£¼x£¼eʱ£¬f'£¨x£©£¾0£»
µ±x£¾eʱ£¬f'£¨x£©£¼0£®ËùÒÔf£¨x£©ÔÚ£¨0£¬e£©ÉÏΪÔöº¯Êý£»ÔÚ£¨e£¬+¡Þ£©ÉÏΪ¼õº¯Êý£®
µ±n=1£¬2ʱ£¬ÏÔÈ»ÓÐnn+1£¼£¨n+1£©n£¬
µ±n¡Ý3ʱ£¬f£¨n£©£¾f£¨n+1£©£¬¼´
lnn |
n |
ln(n+1) |
n+1 |
ËùÒÔ£¨n+1£©lnn£¾nln£¨n+1£©£¬¼´lnnn+1£¾ln£¨n+1£©n£¬
ËùÒÔnn+1£¾£¨n+1£©n£®
×ÛÉÏ£ºµ±n=1£¬2ʱ£¬nn+1£¼£¨n+1£©n£¬¼´bnbn+1£¼bn+1bn£»
µ±n¡Ý3ʱ£¬nn+1£¾£¨n+1£©n¼´bnbn+1£¾bn+1bn£®£¨16·Ö£©
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÊýÁС¢º¯Êý¡¢µ¼Êý¡¢²»µÈʽµÈ»ù´¡ÖªÊ¶£¬·ÖÀàÌÖÂÛ¡¢»¯¹é˼ÏëµÈÊýѧ˼Ïë·½·¨£¬ÒÔ¼°ÍÆÀí¡¢·ÖÎöÓë½â¾öÎÊÌâµÄÄÜÁ¦£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
ÉèÊýÁÐ{an}Âú×ãa1=1£¬ÇÒ¶ÔÈÎÒâµÄn¡ÊN*£¬µãPn£¨n£¬an£©¶¼ÓÐ
=(1£¬2)£¬ÔòÊýÁÐ{an}µÄͨÏʽΪ£¨¡¡¡¡£©
. |
PnPn+1 |
ÉèÊýÁÐ{an}Âú×ãa1=1£¬a2+a4=6£¬ÇÒ¶ÔÈÎÒân¡ÊN*£¬º¯Êýf£¨x£©=£¨an-an+1+an+2£©x+an+1?cosx-an+2sinxÂú×ãf¡ä(
)=0Èôcn=an+
£¬ÔòÊýÁÐ{cn}µÄÇ°nÏîºÍSnΪ£¨¡¡¡¡£©
¦Ð |
2 |
1 |
2an |
A¡¢
| ||||
B¡¢
| ||||
C¡¢
| ||||
D¡¢
|