题目内容
已知四棱锥P-ABCD中,底面ABCD为菱形,∠ABC=60°,PA⊥平面ABCD,E为BC中点,求证:AE⊥PD.
证:设
=
,
=
,
=
,
∵PA⊥平面ABCD,
∴
•
=0,
•
=0,
∵∠ABC=60°,四边形ABCD为菱形,
∴
•
=|
|•|
|•cos∠BAD=|
|2•cos120°
=-
|
|2.
=
+
=
+
,
=
+
+
+
=-
+
+
-
=
-
,
•
=(
+
)•(
-
)
=
•
+
|
|2-
•
-
•
=-
|
|2+
|
|2=0,
∴
⊥
,
∴AE⊥PD.
AB |
a |
AD |
b |
AP |
c |
∵PA⊥平面ABCD,
∴
a |
c |
b |
c |
∵∠ABC=60°,四边形ABCD为菱形,
∴
a |
b |
a |
b |
b |
=-
1 |
2 |
b |
AE |
AB |
BE |
a |
1 |
2 |
b |
PD |
PA |
AB |
BC |
CD |
c |
a |
b |
a |
b |
c |
AE |
PD |
a |
1 |
2 |
b |
b |
c |
=
a |
b |
1 |
2 |
b |
a |
c |
1 |
2 |
b |
c |
=-
1 |
2 |
b |
1 |
2 |
b |
∴
AE |
PD |
∴AE⊥PD.
练习册系列答案
相关题目