题目内容
【题目】.已知点,,动点满足条件.记动点的轨迹为.
(1)求的方程;
(2)若是上的不同两点,是坐标原点,求的最小值.
【答案】(1);(2)
【解析】
(1)根据双曲线的定义可知轨迹为双曲线的右支,从而可得轨迹方程;(2)当直线斜率不存在时,可求得;当直线斜率存在时,假设直线方程,代入可整理得到一元二次方程;根据有两个正实根可构造出不等式组,求得斜率;将利用坐标运算表示为符合韦达定理的形式,代入整理后,结合可求得;综合两种情况可得所求最小值.
(1)
由双曲线定义可知:点的轨迹是以为焦点的双曲线的右支
,,
的方程为:
(2)①当直线斜率不存在时,设直线方程为:
此时,
②当直线斜率存在时,设直线方程为:
代入双曲线方程可得:
可知上式有两个不等的正实数根
解得:
由得:
综上所述,的最小值为
练习册系列答案
相关题目
【题目】为了调查观众对电影“复仇者联盟4”结局的满意程度,研究人员在某电影院随机抽取了1000名观众作调查,所得结果如下所示,其中不喜欢“复仇者联盟4”的结局的观众占被调查观众总数的.
男性观众 | 女性观众 | 总计 | |
喜欢“复仇者联盟4”的结局 | 400 | ||
不喜欢“复仇者联盟4”的结局 | 200 | ||
总计 |
(Ⅰ)完善上述列联表;
(Ⅱ)是否有99.9%的把握认为观众对电影“复仇者联盟4”结局的满意程度与性别具有相关性?
附:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |