题目内容
【题目】已知椭圆:的左、右焦点分别为,右顶点为,且过点,圆是以线段为直径的圆,经过点且倾斜角为的直线与圆相切.
(1)求椭圆及圆的方程;
(2)是否存在直线,使得直线与圆相切,与椭圆交于两点,且满足?若存在,请求出直线的方程,若不存在,请说明理由.
【答案】(1)椭圆的方程为,圆的方程为;(2)不存在
【解析】分析:(1)由题意得,再根据椭圆过点得到关于的方程组,求解后可得椭圆和圆的方程.(2)先假设存在直线满足条件.(ⅰ)当直线斜率不存在时,可得直线方程为,求得点的坐标后验证可得;(ⅱ)当直线斜率存在时,设出直线方程,与椭圆方程联立消元后得到一元二次方程,结合根据系数的关系可得
不成立.从而可得不存在直线满足题意.
详解:(1)由题意知,,,圆的方程为
由题可知,解得 ,
所以椭圆的方程为,圆的方程为.
(2)假设存在直线满足题意.
由,可得,故.
(ⅰ)当直线的斜率不存在时,此时的方程为.
当直线时,可得
所以.
同理可得,当时,.
故直线不存在.
(ⅱ)当直线的斜率存在时,设方程为,
因为直线与圆相切,
所以,整理得①
由消去y整理得,
设,
则,,
因为,
所以,
则,即,
所以,
所以,
整理得②
由①②得,此时方程无解.
故直线不存在.
由(i)(ii)可知不存在直线满足题意.
【题目】空气质量指数AQI是一种反映和评价空气质量的方法,AQI指数与空气质量对应如表所示:
AQI | 0~50 | 51~100 | 101~150 | 151~200 | 201~300 | 300以上 |
空气质量 | 优 | 良 | 轻度污染 | 中度污染 | 重度污染 | 严重污染 |
如图是某城市2018年12月全月的AQI指数变化统计图:
根据统计图判断,下列结论正确的是( )
A. 整体上看,这个月的空气质量越来越差
B. 整体上看,前半月的空气质量好于后半个月的空气质量
C. 从AQI数据看,前半月的方差大于后半月的方差
D. 从AQI数据看,前半月的平均值小于后半月的平均值