题目内容
18.设{an}是等差数列,{bn}是各项都为正整数的等比数列,且a1=b1=1,a13b2=50,a8+b2=a3+a4+5,n∈N*.(Ⅰ)求{an},{bn}的通项公式;
(Ⅱ)若数列{dn}满足${d_n}{d_{n+1}}={(\frac{1}{2})^{-8+{{log}_2}{b_{n+1}}}}$(n∈N*),且d1=16,试求{dn}的通项公式及其前2n项和S2n.
分析 (Ⅰ)通过{bn}的各项都为正整数及$\left\{\begin{array}{l}(1+12d)q=50\\(1+7d)+q=(1+2d)+(1+3d)+5\end{array}\right.$,可得解得$\left\{{\begin{array}{l}{d=2}\\{q=2}\end{array}}\right.$,从而可得结论;
(Ⅱ)通过(I)及log2bn+1=n可得$\frac{{{d_{n+2}}}}{d_n}=\frac{1}{2}$,结合已知条件可得d1,d3,d5,…是以d1=16为首项、以$\frac{1}{2}$为公比的等比数列,d2,d4,d6,…是以d2=8为首项、以$\frac{1}{2}$为公比的等比数列,分别求出各自的通项及前n项和,计算即可.
解答 解:(Ⅰ)设{an}的公差为d,{bn}的公比为q,则依题意有q>0,
且$\left\{\begin{array}{l}(1+12d)q=50\\(1+7d)+q=(1+2d)+(1+3d)+5\end{array}\right.$,
即$\left\{\begin{array}{l}(1+12d)q=50\\ 2d+q=6\end{array}\right.$,
解得$\left\{{\begin{array}{l}{d=2}\\{q=2}\end{array}}\right.$,或$\left\{{\begin{array}{l}{d=\frac{11}{12}}\\{q=\frac{25}{6}}\end{array}}\right.$,
由于{bn}各项都为正整数的等比数列,所以$\left\{{\begin{array}{l}{d=2}\\{q=2}\end{array}}\right.$,
从而an=1+(n-1)d=2n-1,${b_n}={q^{n-1}}={2^{n-1}}$;
(Ⅱ)∵${b_n}={2^{n-1}}$,∴log2bn+1=n,
∴${d_n}{d_{n+1}}={(\frac{1}{2})^{-8+n}}$,${d_{n+1}}{d_{n+2}}={(\frac{1}{2})^{-7+n}}$,
两式相除:$\frac{{{d_{n+2}}}}{d_n}=\frac{1}{2}$,
由d1=16,${d_1}{d_2}={(\frac{1}{2})^{-8+1}}=128$,可得:d2=8,
∴d1,d3,d5,…是以d1=16为首项,以$\frac{1}{2}$为公比的等比数列;
d2,d4,d6,…是以d2=8为首项,以$\frac{1}{2}$为公比的等比数列,
∴当n为偶数时,${d_n}=8×{(\frac{1}{2})^{\frac{n}{2}-1}}=16{(\frac{{\sqrt{2}}}{2})^n}$,
当n为奇数时,${d_n}=16×{(\frac{1}{2})^{\frac{n+1}{2}-1}}=16\sqrt{2}{(\frac{{\sqrt{2}}}{2})^n}$,
综上,${d}_{n}=\left\{\begin{array}{l}{16(\frac{\sqrt{2}}{2})^{n},}&{n为偶数}\\{16\sqrt{2}(\frac{\sqrt{2}}{2})^{n},}&{n为奇数}\end{array}\right.$,
∴S2n=(d1+d3+…+d2n-1)+(d2+d4+…+d2n)
=$\frac{{16×[1-{{(\frac{1}{2})}^n}]}}{{1-\frac{1}{2}}}+\frac{{8×[1-{{(\frac{1}{2})}^n}]}}{{1-\frac{1}{2}}}=32[1-{(\frac{1}{2})^n}]+16[1-{(\frac{1}{2})^n}]=48-48{(\frac{1}{2})^n}$.
点评 本题考查等差、等比数列的基本性质,求通项及前n项和,考查对数的性质,考查分类讨论的思想,注意解题方法的积累,属于中档题.
排队人数 | 0 | 1 | 2 | 3 | 4 | ≥5 |
概率 | 0.1 | 0.16 | 0.3 | 0.3 | 0.1 | 0.04 |
A. | {-2,-1} | B. | {1,2} | C. | {-2,1} | D. | {-2,-1,1,2} |