题目内容
9.若函数f(x)=ax2+bx+1是定义在[-1-a,2a]上的偶函数,则该函数的最大值为( )A. | 5 | B. | 4 | C. | 3 | D. | 2 |
分析 直接利用二次函数的性质,判断求解即可.
解答 解:函数f(x)=ax2+bx+1是定义在[-1-a,2a]上的偶函数,
可得b=0,并且1+a=2a,解得a=1,
所以函数为:f(x)=x2+1,x∈[-2,2],
函数的最大值为:5.
故选:A.
点评 本题考查函数的最大值的求法,二次函数的性质,考查计算能力.
练习册系列答案
相关题目
17.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为60°,且|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=1,则|$\overrightarrow{a}+2\overrightarrow{b}$|=( )
A. | 2 | B. | $\sqrt{10}$ | C. | 2$\sqrt{2}$ | D. | 2$\sqrt{3}$ |
4.学校开展阳光体育活动,对学生的锻练时间进行随机抽样调查,从中随机抽取男、女生各25名进行了问卷调查,得到了如下列联表:
(Ⅰ) 根据上表数据求x,y,并据此资料分析:有多大的把握可以认为“锻练时间与性别有关”?
(Ⅱ) 从这50名学生中用分层抽样的方法抽取5人为样本,求从该样本中任取2人,
至少有1人锻练时间少于1小时的概率.
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
锻练时间 | 男生 | 女生 | 合计 |
少于1小时 | 5 | 15 | 20 |
不少于1小时 | 20 | 10 | 30 |
合 计 | 25 | 25 | 50 |
(Ⅱ) 从这50名学生中用分层抽样的方法抽取5人为样本,求从该样本中任取2人,
至少有1人锻练时间少于1小时的概率.
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥K0) | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |