题目内容
4.已知实数变量xy满足$\left\{\begin{array}{l}{x+y≥1}\\{x-y≤0}\\{mx-\frac{1}{2}y-1≤0}\end{array}\right.$,且目标函数z=3x-y的最大值为4,则实数m的值为( )A. | $\frac{3}{2}$ | B. | $\frac{1}{2}$ | C. | 2 | D. | 1 |
分析 画出满足条件的平面区域,找到直线y=3x-z过A点时,z取得最大值4,将A点的坐标代入直线z=3x-y的方程,求出m的值即可.
解答 解:画出满足条件的平面区域,如图示:
,
由z=3x-y得y=3x-z,
显然直线y=3x-z过A点时,z取得最大值4,
∴z=$\frac{4}{2m-1}$=4,解得:m=1,
故选:D.
点评 本题考察了简单的线性规划问题,考察数形结合,是一道中档题.
练习册系列答案
相关题目
15.4月23人是“世界读书日”,某中学在此期间开展了一系列的读书教育活动,为了解本校学生课外阅读情况,学校随机抽取了100名学生对其课外阅读时间进行调查,下面是根据调查结果绘制的学生日均课外阅读时间(单位:分钟)的频率分布直方图,若将日均课外阅读时间不低于60分钟的学生称为“读书谜”,低于60分钟的学生称为“非读书谜”
(1)求x的值并估计全校3000名学生中读书谜大概有多少?(经频率视为频率)
(2)根据已知条件完成下面2×2的列联表,并据此判断是否有99%的把握认为“读书谜”与性别有关?
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$n=a+b+c+d
(1)求x的值并估计全校3000名学生中读书谜大概有多少?(经频率视为频率)
非读书迷 | 读书迷 | 合计 | |
男 | 15 | ||
女 | 45 | ||
合计 |
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$n=a+b+c+d
P(K2≥k0) | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
12.已知直线l,m和平面α,β,下列命题中正确的是( )
A. | 若l∥α,l∥β,则α∥β | B. | 若l∥α,m?α,则l∥m | C. | 若α⊥β,l∥α,则l⊥β | D. | 若l⊥α,m?α,则l⊥m |
9.已知a,b∈R,则“a2+b2≤1”是“ab≤$\frac{1}{2}$”的( )
A. | 充分不必要条件 | B. | 必要不充分条件 | ||
C. | 充要条件 | D. | 既不充分也不必要条件 |