题目内容
【题目】已知函数f(x)=x2﹣2x+a(ex﹣1+e﹣x+1)有唯一零点,则a=( )
A.﹣
B.
C.
D.1
【答案】C
【解析】解:因为f(x)=x2﹣2x+a(ex﹣1+e﹣x+1)=﹣1+(x﹣1)2+a(ex﹣1+ )=0,
所以函数f(x)有唯一零点等价于方程1﹣(x﹣1)2=a(ex﹣1+ )有唯一解,
等价于函数y=1﹣(x﹣1)2的图象与y=a(ex﹣1+ )的图象只有一个交点.
①当a=0时,f(x)=x2﹣2x≥﹣1,此时有两个零点,矛盾;
②当a<0时,由于y=1﹣(x﹣1)2在(﹣∞,1)上递增、在(1,+∞)上递减,
且y=a(ex﹣1+ )在(﹣∞,1)上递增、在(1,+∞)上递减,
所以函数y=1﹣(x﹣1)2的图象的最高点为A(1,1),y=a(ex﹣1+ )的图象的最高点为B(1,2a),
由于2a<0<1,此时函数y=1﹣(x﹣1)2的图象与y=a(ex﹣1+ )的图象有两个交点,矛盾;
③当a>0时,由于y=1﹣(x﹣1)2在(﹣∞,1)上递增、在(1,+∞)上递减,
且y=a(ex﹣1+ )在(﹣∞,1)上递减、在(1,+∞)上递增,
所以函数y=1﹣(x﹣1)2的图象的最高点为A(1,1),y=a(ex﹣1+ )的图象的最低点为B(1,2a),
由题可知点A与点B重合时满足条件,即2a=1,即a= ,符合条件;
综上所述,a= ,
故选:C.
通过转化可知问题等价于函数y=1﹣(x﹣1)2的图象与y=a(ex﹣1+ )的图象只有一个交点求a的值.分a=0、a<0、a>0三种情况,结合函数的单调性分析可得结论.
【题目】某研究型学习小组调查研究高中生使用智能手机对学习的影响,部分统计数据如下:
使用智能手机 | 不使用智能手机 | 合计 | |
学习成绩优秀 | |||
学习成绩不优秀 | |||
合计 |
(1)根据以上统计数据,你是否有的把握认为使用智能手机对学习有影响?
(2)为进一步了解学生对智能手机的使用习惯,现从全校使用智能手机的高中生中(人数很多)随机抽取 人,求抽取的学生中学习成绩优秀的与不优秀的都有的概率.
附: