题目内容

已知向量
a
=(1+cosωx,1),
b
=(1,a+
3
sinωx)(ω为常数且ω>0),函数f(x)=
a
b
在R上的最大值为2.
(1)求实数a的值;
(2)把函数y=f(x)的图象向右平移
π
个单位,可得函数y=g(x)的图象,若y=g(x)在[0,
π
4
]上为增函数,求ω的最大值.
分析:(1)把向量
a
=(1+cosωx,1),
b
=(1,a+
3
sinωx)(ω为常数且ω>0),代入函数f(x)=
a
b
整理,利用两角和的正弦函数化为2sin(ωx+
π
6
)+a+1,根据最值求实数a的值;
(2)由题意把函数y=f(x)的图象向右平移
π
个单位,可得函数y=g(x)的图象,利用y=g(x)在[0,
π
4
]上为增函数,就是周期≥π,然后求ω的最大值.
解答:解:(1)f(x)=1+cosωx+a+
3
sinωx=2sin(ωx+
π
6
)+a+1.
因为函数f(x)在R上的最大值为2,
所以3+a=2,故a=-1.
(2)由(1)知:f(x)=2sin(ωx+
π
6
),
把函数f(x)=2sin(ωx+
π
6
)的图象向右平移
π
个单位,可得函数
y=g(x)=2sinωx.
又∵y=g(x)在[0,
π
4
]上为增函数,
∴g(x)的周期T=
ω
≥π,即ω≤2,
∴ω的最大值为2.
点评:本题是基础题,以向量的数量积为载体,三角函数的化简求值为主线,三角函数的性质为考查目的一道综合题,考查学生分析问题解决问题的能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网