题目内容
【题目】如图,已知椭圆C的中心在原点,其一个焦点与抛物线y2=4x的焦点相同,又椭圆C上有一点M(2,1),直线l平行于OM且与椭圆C交于A,B两点,连接MA,MB.
(1)求椭圆C的方程;
(2)当MA,MB与x轴所构成的三角形是以x轴上所在线段为底边的等腰三角形时,求直线l在y轴上截距的取值范围.
【答案】见解析
【解析】解:(1)抛物线y2=4x的焦点为(,0),又椭圆C上有一点M(2,1),
由题意设椭圆方程为:+=1(a>b>0),
则
解得
∴椭圆C的方程为+=1.
(2)∵l∥OMk1=kO M=,设直线在y轴上的截距为m,则直线l:y=x+m.
直线l与椭圆C交于A,B两点.
联立消去y得
x2+2mx+2m2-4=0,∴Δ=(2m)2-4(2m2-4)=4(4-m2)>0,
∴m的取值范围是{m|-2<m<2,且m≠0},
设MA,MB的斜率分别为k1,k2,
∴k1+k2=0,
则A(x1,y1),B(x2,y2),则k1=,k2=,x1x2=2m2-4,x1+x2=-2m,
∴k1+k2=+
=
=
=
==0,
故MA,MB与x轴始终围成等腰三角形时,∴直线l在y轴上的截距m的取值范围是{m|-2<m<2,且m≠0}.
练习册系列答案
相关题目
【题目】某中学为了解2017届高三学生的性别和喜爱游泳是否有关,对100名高三学生进行了问卷调查,得到如下列联表:
喜欢游泳 | 不喜欢游泳 | 合计 | |
男生 | 10 | ||
女生 | 20 | ||
合计 |
已知在这100人中随机抽取1人,抽到喜欢游泳的学生的概率为.
(Ⅰ)请将上述列联表补充完整;
(Ⅱ)判断是否有99.9%的把握认为喜欢游泳与性别有关?
附:
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |