ÌâÄ¿ÄÚÈÝ
¶¨Ò壺ÒÑÖªº¯Êýf£¨x£©Óëg£¨x£©£¬Èô´æÔÚÒ»ÌõÖ±Ïßy=kx+b£¬Ê¹µÃ¶Ô¹«¹²¶¨ÒåÓòÄÚµÄÈÎÒâʵÊý¾ùÂú×ãg£¨x£©¡Üf£¨x£©¡Ükx+bºã³ÉÁ¢£¬ÆäÖеȺÅÔÚ¹«¹²µã´¦³ÉÁ¢£¬Ôò³ÆÖ±Ïßy=kx+bΪÇúÏßf£¨x£©Óëg£¨x£©µÄ¡°×óͬÅÔÇÐÏß¡±£®ÒÑÖªf£¨x£©=Inx£¬g£¨x£©=1-
£¨I£©Ö¤Ã÷£ºÖ±Ïßy=x-lÊÇf£¨x£©Óëg£¨x£©µÄ¡°×óͬÅÔÇÐÏß¡±£»
£¨¢ò£©ÉèP£¨x1£¬f£¨x1£©£©£¬Q£¨x2£¬f£¨x2£©£©ÊǺ¯Êý f£¨x£©Í¼ÏóÉÏÈÎÒâÁ½µã£¬ÇÒ0£¼x1£¼x2£¬Èô´æÔÚʵÊýx3£¾0£¬Ê¹µÃf¡ä£¨x3£©=
£®Çë½áºÏ£¨I£©ÖеĽáÂÛÖ¤Ã÷x1£¼x3£¼x2£®
1 |
x |
£¨I£©Ö¤Ã÷£ºÖ±Ïßy=x-lÊÇf£¨x£©Óëg£¨x£©µÄ¡°×óͬÅÔÇÐÏß¡±£»
£¨¢ò£©ÉèP£¨x1£¬f£¨x1£©£©£¬Q£¨x2£¬f£¨x2£©£©ÊǺ¯Êý f£¨x£©Í¼ÏóÉÏÈÎÒâÁ½µã£¬ÇÒ0£¼x1£¼x2£¬Èô´æÔÚʵÊýx3£¾0£¬Ê¹µÃf¡ä£¨x3£©=
f(x2)-f(x1) |
x2-x1 |
·ÖÎö£º£¨I£©ÓÉÌâÒâÖªf£¨x£©Óëg£¨x£©ÔÚ¹«¹²µã´¦µÄÇÐÏß·½³ÌΪy=x-1£¬ÓûÖ¤y=x-1¾ÍÊÇ×óͬÅÔÇÐÏß·½³Ì£¬¼´Ö¤1-
¡Ülnx¡Üx-1£¨x£¾0£©£¬ÏÂÃæͨ¹ý¹¹Ô캯ÊýÀûÓõ¼ÊýÑо¿Æä×îÖµ¼´¿ÉÖ¤³ö½á¹û£»
£¨II£©ÀûÓ÷´Ö¤·¨½øÐÐÖ¤Ã÷£¬Áîx3¡Üx1£¬Ôòx3=
¡Üx1£¬´Ó¶ø¿ÉµÃx2-x1¡Üx1ln
£¼x1£¨
-1£©=x2-x1£¬Óɴ˵ÃÖ¤£®
1 |
x |
£¨II£©ÀûÓ÷´Ö¤·¨½øÐÐÖ¤Ã÷£¬Áîx3¡Üx1£¬Ôòx3=
x2-x1 | ||
ln
|
x2 |
x1 |
x2 |
x1 |
½â´ð£º½â£º£¨I£©ÓûÖ¤y=x-1¾ÍÊÇ×óͬÅÔÇÐÏß·½³Ì£¬¼´Ö¤1-
¡Ülnx¡Üx-1£¨x£¾0£©£®
Ïȹ¹Ô캯Êýh£¨x£©=lnx-x+1£¨x£¾0£©£¬Ôòh'£¨x£©=
-1=
£¬
Áîh'£¨x£©£¾0¿ÉµÃ0£¼x£¼1£¬h'£¨x£©£¼0¿ÉµÃx£¼0»òx£¾1£¬
¡àº¯ÊýÔÚx=1´¦h£¨x£©È¡µÃ×î´óÖµh£¨1£©=0£¬ËùÒÔlnx-x+1¡Ü0£¬¼´lnx¡Üx-1£¨x£¾0£©£®£¨4·Ö£©
ÔÙ¹¹Ô캯Êý¦Õ£¨x£©=lnx-1+
£¨x£¾0£©£¬Ôò¦Õ¡ä£¨x£©=
£¬
Áî¦Õ'£¨x£©£¾0¿ÉµÃx£¾1£¬¦Õ'£¨x£©£¼0¿ÉµÃx£¼1£¬
¡àÔÚx=1´¦¦Õ£¨x£©È¡µÃ×îСֵ¦Õ£¨1£©=0£¬ËùÒÔlnx-1+
¡Ý0£¬¼´lnx¡Ý1-
£¨x£¾0£©£®
¹Ê¶ÔÈÎÒâx¡Ê£¨0£¬+¡Þ£©£¬ºãÓÐ1-
¡Ülnx¡Üx-1£¨x£¾0£©³ÉÁ¢£¬
¼´y=x-1¾ÍÊÇ×óͬÅÔÇÐÏß·½³Ì£®£¨6·Ö£©
£¨II£©ÒòΪf¡ä£¨x£©=
£¬ËùÒÔf¡ä£¨x3£©=
=
=
£¬ËùÒÔx3=
£®
Áîx3¡Üx1£¬Ôòx3=
¡Üx1£¬
¡àx2-x1¡Üx1ln
£¼x1£¨
-1£©=x2-x1£¬
ÏÔÈ»×ÔÏàì¶Ü£¬¹Êx1£¼x3£»Í¬Àí¿ÉÖ¤x3£¼x2£®
¹Êx1£¼x3£¼x2£®£¨12·Ö£©
1 |
x |
Ïȹ¹Ô캯Êýh£¨x£©=lnx-x+1£¨x£¾0£©£¬Ôòh'£¨x£©=
1 |
x |
1-x |
x |
Áîh'£¨x£©£¾0¿ÉµÃ0£¼x£¼1£¬h'£¨x£©£¼0¿ÉµÃx£¼0»òx£¾1£¬
¡àº¯ÊýÔÚx=1´¦h£¨x£©È¡µÃ×î´óÖµh£¨1£©=0£¬ËùÒÔlnx-x+1¡Ü0£¬¼´lnx¡Üx-1£¨x£¾0£©£®£¨4·Ö£©
ÔÙ¹¹Ô캯Êý¦Õ£¨x£©=lnx-1+
1 |
x |
x-1 |
x2 |
Áî¦Õ'£¨x£©£¾0¿ÉµÃx£¾1£¬¦Õ'£¨x£©£¼0¿ÉµÃx£¼1£¬
¡àÔÚx=1´¦¦Õ£¨x£©È¡µÃ×îСֵ¦Õ£¨1£©=0£¬ËùÒÔlnx-1+
1 |
x |
1 |
x |
¹Ê¶ÔÈÎÒâx¡Ê£¨0£¬+¡Þ£©£¬ºãÓÐ1-
1 |
x |
¼´y=x-1¾ÍÊÇ×óͬÅÔÇÐÏß·½³Ì£®£¨6·Ö£©
£¨II£©ÒòΪf¡ä£¨x£©=
1 |
x |
1 |
x3 |
lnx2-lnx1 |
x2-x1 |
ln
| ||
x2-x1 |
x2-x1 | ||
ln
|
Áîx3¡Üx1£¬Ôòx3=
x2-x1 | ||
ln
|
¡àx2-x1¡Üx1ln
x2 |
x1 |
x2 |
x1 |
ÏÔÈ»×ÔÏàì¶Ü£¬¹Êx1£¼x3£»Í¬Àí¿ÉÖ¤x3£¼x2£®
¹Êx1£¼x3£¼x2£®£¨12·Ö£©
µãÆÀ£º±¾Ì⿼²éµ¼Êý֪ʶµÄÔËÓ㬿¼²éж¨Ò壬¿¼²éº¯ÊýµÄ×îÖµ£¬ÕýÈ·Àí½âж¨ÒåÊǹؼü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿