搜索
题目内容
设随机变量ξ~
,又η=5ξ,则Eη和Dη的值分别是( )
A.
和
B.
和
C.
和
D.
和
试题答案
相关练习册答案
C
试题分析:
,
并由关系:
.
练习册系列答案
周考月考期中期末冲刺100分系列答案
名校通行证有效作业系列答案
全能优化大考卷金题卷系列答案
高中新课程名师导学 系列答案
小学同步评价与测试 系列答案
品学双优立体期末系列答案
新疆第一卷课时单元夺冠卷系列答案
鸿鹄志中考王系列答案
优学三步曲系列答案
名师导航系列答案
相关题目
中国2010年上海世博会已于2010年5月1日在上海隆重开馆.小王某天乘火车从重庆到上海去参观世博会,若当天从重庆到上海的三列火车正点到达的概率分别为0.8、0.7、0.9,假设这三列火车之间是否正点到达互不影响.求:
(1)这三列火车恰好有两列正点到达的概率;
(2)这三列火车至少有一列正点到达的概率
同时抛掷4枚均匀的硬币80次,设4枚硬币正好出现2枚正面向上,2枚反面向上的次数为
.
(1)求抛掷4枚硬币,恰好2枚正面向上,2枚反面向上的概率;
(2)求
的数学期望和方差.
为了了解青少年视力情况,某市从高考体检中随机抽取16名学生的视力进行调查,经医生用对数视力表检查得到每个学生的视力状况的茎叶图(以小数点前的一位数字为茎,小数点后的一位数字为叶)如下:
(1)若视力测试结果不低丁5.0,则称为“好视力”,求校医从这16人中随机选取3人,至多有1人是“好视力”的概率;
(2)以这16人的样本数据来估计该市所有参加高考学生的的总体数据,若从该市参加高考的学生中任选3人,记
表示抽到“好视力”学生的人数,求
的分布列及数学期望.
以下是某地搜集到的新房屋的销售价格y和房屋的面积x的数据:
房屋面积(m
2
)
115
110
80
135
105
销售价格(万元)
24.8
21.6
18.4
29.2
22
(1)画出数据对应的散点图;
(2)求线性回归方程,并在散点图中加上回归直线;
(3)据(2)的结果估计当房屋面积为150m
2
时的销售价格.
(参考公式:
?
b
=
n
i=1
x
i
y
i
-n
.
x
.
y
n
i=1
x
2i
-n
.
x
2
,
?
a
=
.
y
-
?
b
.
x
,
5
i=1
x
2
i
=60975
,
5
i=1
x
i
y
i
=115×24.8+110×21.6+80×18.4+135×29.2+105×22=12952
)
某校为了探索一种新的教学模式,进行了一项课题实验,甲班为实验班,乙班为对比班,甲乙两班的人数均为50人,一年后对两班进行测试,测试成绩的分组区间为[80,90)、[90,100)、[100,110)、[110,120)、[120,130),由此得到两个班测试成绩的频率分布直方图:
(Ⅰ)完成下面2×2列联表,你能有97.5%的把握认为“这两个班在这次测试中成绩的差异与实施课题实验有关”吗?并说明理由;
成绩小于100分
成绩不小于100分
合计
甲班
a=______
b=______
50
乙班
c=24
d=26
50
合计
e=______
f=______
100
(Ⅱ)现从乙班50人中任意抽取3人,记ξ表示抽到测试成绩在[100,120)的人数,求ξ的分布列和数学期望Eξ.
附:K
2
=
n
(ad-bc)
2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d
P(K
2
≥k
0
)
0.15
0.10
0.05
0.025
0.010
0.005
0.001
k
0
2.072
2.706
3.841
5.204
6.635
7.879
10.828
在一次独立性检验中,得出2×2列联表如下:
y
1
y
2
合计
x
1
200
800
1000
x
2
180
m
180+m
合计
380
800+m
1180+m
且最后发现,两个分类变量x和y没有任何关系,则m的可能值是( )
A.200
B.720
C.100
D.180
假设某班级教室共有4扇窗户,在每天上午第三节课上课预备铃声响起时,每扇窗户或被敞开或被关闭,且概率均为0.5.记此时教室里敞开的窗户个数为X.
(1)求X的分布列;
(2)若此时教室里有两扇或两扇以上的窗户被关闭,班长就会将关闭的窗户全部敞开,否则维持原状不变.记每天上午第三节课上课时该教室里敞开的窗户个数为Y,求Y的数学期望.
某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:
文艺节目
新闻节目
总计
20至40岁
40
18
58
大于40岁
15
27
42
总计
55
45
100
(1)由表中数据直观分析,收看新闻节目的观众是否与年龄有关?
(2)用分层抽样方法在收看新闻节目的观众中随机抽取5名,大于40岁的观众应该抽取几名?
(3)在上述抽取的5名观众中任取2名,求恰有1名观众的年龄为20至40岁的概率.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总