题目内容
如图,△OBC的在个顶点坐标分别为(0,0)、(1,0)、(0,2),设P为线段BC的中点,P为线段CO的中点,P3为线段OP1的中点,对于每一个正整数n,Pn+3为线段PnPn+1的中点,令Pn的坐标为(xn,yn),an=1 |
2 |
(Ⅰ)求a1,a2,a3及an;
(Ⅱ)证明yn+4=1-
yn |
4 |
(Ⅲ)若记bn=y4n+4-y4n,n∈N*,证明{bn}是等比数列.
分析:(Ⅰ)由题意可知yn-3=
,由此可推导出an=a1=2,n∈N*.
(Ⅱ)将等式
yn+yn+1+yn+2=2两边除以2,得
yn+
=1,由此可知yn+4=1-
.
(Ⅲ)由bn-1=y4n+3-y4n+4=(1-
)-(1-
)=-
bn和b1=y3-y4=-
≠0,知{bn}是公比为-
的等比数列.
yn+yn+1 |
2 |
(Ⅱ)将等式
1 |
2 |
1 |
4 |
yn+1+yn+2 |
2 |
yn |
4 |
(Ⅲ)由bn-1=y4n+3-y4n+4=(1-
y4n+4 |
4 |
y4n |
4 |
1 |
4 |
1 |
4 |
1 |
4 |
解答:解:(Ⅰ)因为y1=y2=y4=1,y3=
,y5=
,
所以a1=a2=a3=2,又由题意可知yn-3=
∴an+1=
y n+1+yn+2+yn+3
=
yn+1+yn+2+
=
yn+yn+1+yn+2=an,
∴{an}为常数列
∴an=a1=2,n∈N*.
(Ⅱ)将等式
yn+yn+1+yn+2=2两边除以2,得
yn+
=1,
又∵yn+4=
∴yn+4=1-
.
(Ⅲ)∵bn-1=y4n+3-y4n+4=(1-
)-(1-
)
=-
(y4n+4-y4n)
=-
bn,
又∵b1=y3-y4=-
≠0,
∴{bn}是公比为-
的等比数列.
1 |
2 |
3 |
4 |
所以a1=a2=a3=2,又由题意可知yn-3=
yn+yn+1 |
2 |
∴an+1=
1 |
2 |
=
1 |
2 |
y n+yn+1 |
2 |
=
1 |
2 |
∴{an}为常数列
∴an=a1=2,n∈N*.
(Ⅱ)将等式
1 |
2 |
1 |
4 |
yn+1+yn+2 |
2 |
又∵yn+4=
y n+1+yn+2 |
2 |
∴yn+4=1-
yn |
4 |
(Ⅲ)∵bn-1=y4n+3-y4n+4=(1-
y4n+4 |
4 |
y4n |
4 |
=-
1 |
4 |
=-
1 |
4 |
又∵b1=y3-y4=-
1 |
4 |
∴{bn}是公比为-
1 |
4 |
点评:本题考查数列的性质和综合运用,解题时要注意公式的灵活运用.
练习册系列答案
相关题目