ÌâÄ¿ÄÚÈÝ
16£®ÒÑÖªµãF£¨1£¬0£©£¬µãPΪƽÃæÉϵĶ¯µã£¬¹ýµãP×÷Ö±Ïßl£ºx=-1µÄ´¹Ïߣ¬´¹×ãΪH£¬ÇÒ$\overrightarrow{HP}$•$\overrightarrow{HF}$=$\overrightarrow{FP}$•$\overrightarrow{FH}$£®£¨1£©Ç󶯵ãPµÄ¹ì¼£CµÄ·½³Ì£»
£¨2£©ÉèµãPµÄ¹ì¼£CÓëxÖá½»ÓÚµãM£¬µãA£¬BÊǹ켣CÉÏÒìÓÚµãMµÄ²»Í¬DµÄÁ½µã£¬ÇÒÂú×ã$\overrightarrow{MA}$•$\overrightarrow{MB}$=0£¬ÔÚA£¬B´¦·Ö±ð×÷¹ì¼£CµÄÇÐÏß½»ÓÚµãN£¬ÇóµãNµÄ¹ì¼£EµÄ·½³Ì£»
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬ÇóÖ¤£ºkMN•kABΪ¶¨Öµ£®
·ÖÎö £¨1£©ÓÉ$\overrightarrow{HP}•\overrightarrow{HF}=\overrightarrow{FP}•\overrightarrow{FH}$£¬Õ¹¿ªÊýÁ¿»ý¹«Ê½¿ÉµÃ$|\overrightarrow{HP}|=|\overrightarrow{FP}|$£¬¿ÉÖªµãPΪÏ߶ÎHFÖд¹ÏßÉϵĵ㣬ÓÉÅ×ÎïÏ߶¨Òå¿ÉµÃ¶¯µãPµÄ¹ì¼£CΪÒÔFΪ½¹µãµÄÅ×ÎïÏߣ¬
Æä·½³ÌΪy2=4x£»
£¨2£©ÉèÖ±ÏßMAµÄбÂÊΪk£¨k¡Ù0£©£¬Ð´³öÖ±ÏßMAµÄ·½³Ì£¬ºÍÅ×ÎïÏßÁªÁ¢ÇóµÃ$A£¨\frac{4}{k^2}£¬\frac{4}{k}£©$£¬½øÒ»²½ÇóµÃÇÐÏßNAµÄ·½³Ì£¬Í¬ÀíÇó³öÇÐÏßNBµÄ·½³Ì£¬ÁªÁ¢¼´¿ÉÇóµÃ½»µãNµÄ¹ì¼£·½³Ì£»
£¨3£©ÓÉ£¨2£©Çó³öNµÄ×ø±ê£¬ÓÉÁ½µã×ø±êÇóбÂʹ«Ê½ÇóµÃkMN¡¢kABµÃ´ð°¸£®
½â´ð £¨1£©½â£ºÓÉ$\overrightarrow{HP}•\overrightarrow{HF}=\overrightarrow{FP}•\overrightarrow{FH}$¿ÉµÃ£º$|\overrightarrow{HP}|•|\overrightarrow{HF}|cosPHF=|\overrightarrow{FP}|•|\overrightarrow{FH}|cosPFH$£¬
¼´$|\overrightarrow{HP}|=|\overrightarrow{FP}|$£¬¿ÉÖªµãPΪÏ߶ÎHFÖд¹ÏßÉϵĵ㣬¹Ê¶¯µãPµÄ¹ì¼£CΪÒÔFΪ½¹µãµÄÅ×ÎïÏߣ¬
Æä·½³ÌΪy2=4x£»
£¨2£©½â£ºÉèÖ±ÏßMAµÄбÂÊΪk£¨k¡Ù0£©£¬ÔòMAËùÔÚÖ±Ïß·½³ÌΪy=kx£¬
ÁªÁ¢Ö±ÏßMAºÍÅ×ÎïÏß·½³Ì£¬µÃ$A£¨\frac{4}{k^2}£¬\frac{4}{k}£©$£¬
¿ÉÇóµÃÇÐÏßNAµÄ·½³ÌΪ$\frac{4}{k}y=4•\frac{{x+\frac{4}{k^2}}}{2}$£¬»¯¼òÕûÀíµÃ$y=\frac{k}{2}x+\frac{2}{k}$£¬¢Ù
¡ßMA¡ÍMB£¬¡à${k_{OB}}=-\frac{1}{k}$£¬
¹ÊÖ±ÏßMBµÄ·½³ÌΪ$y=-\frac{1}{k}x$£®
ÁªÁ¢Ö±ÏßMBºÍÅ×ÎïÏß·½³Ì£¬½âµÃB£¨4k2£¬-4k£©£¬
¡àÇÐÏßNBµÄ·½³ÌΪ$-4ky=4•\frac{{x+4{k^2}}}{2}$£¬»¯¼òÕûÀíµÃ$y=-\frac{1}{2k}x-2k$£¬¢Ú
¢Ù-¢ÚµÃ£¬$£¨\frac{k}{2}+\frac{1}{2k}£©x+2£¨\frac{1}{k}+k£©=0$£¬½âµÃx=-4£¨¶¨Öµ£©£®
¹ÊµãNµÄ¹ì¼£Îªx=-4£¬ÊÇ´¹Ö±xÖáµÄÒ»Ìõ¶¨Ö±Ïߣ»
£¨3£©Ö¤Ã÷£ºÓÉ£¨2£©ÓÐ$N£¨-4£¬\frac{2}{k}-2k£©$£¬
¡à${k_{NM}}=\frac{{{k^2}-1}}{2k}$£¬${k_{AB}}=\frac{{-2pk-\frac{2p}{k}}}{{2p{k^2}-\frac{2p}{k^2}}}=\frac{k}{{1-{k^2}}}$£®
¹Ê${k_{NM}}•{k_{AB}}=-\frac{1}{2}$£¨¶¨Öµ£©£®
µãÆÀ ±¾Ð¡ÌâÖ÷Òª¿¼²éÅ×ÎïÏßµÄÐÔÖÊ£¬Ö±ÏßÓëԲ׶ÇúÏßµÄ×ÛºÏÓ¦ÓÃÄÜÁ¦£¬¾ßÌåÉæ¼°µ½Å×ÎïÏß±ê×¼·½³ÌµÄÇóÈ¡£¬Ö±ÏßÓëԲ׶ÇúÏßµÄÏà¹Ø֪ʶÒÔ¼°Ô²×¶ÇúÏßÖж¨ÖµµÄÇóÈ¡£®±¾Ð¡Ìâ¶Ô¿¼ÉúµÄ»¯¹éÓëת»¯Ë¼Ïë¡¢ÔËËãÇó½âÄÜÁ¦¶¼ÓкܸßÒªÇó£¬ÊÇѹÖáÌ⣮
A£® | $\frac{3}{4}$ | B£® | $\frac{5}{7}$ | C£® | $\frac{4}{7}$ | D£® | $\frac{9}{4}$ |
A£® | $\frac{1}{2}$£¨1-2${\;}^{-\frac{1}{16}}$£©-1 | B£® | £¨1-2${\;}^{-\frac{1}{16}}$£©-1 | C£® | 1-2${\;}^{-\frac{1}{16}}$ | D£® | $\frac{1}{2}$£¨1-2${\;}^{-\frac{1}{16}}$£© |
A£® | ¼ÙÉèn=k£¨k¡ÊN£©Ê±ÃüÌâ³ÉÁ¢£¬¼´xk+ykÄܱ»x+yÕû³ý | |
B£® | ¼ÙÉèn¡Ýk£¨k¡ÊN£©Ê±ÃüÌâ³ÉÁ¢£¬¼´xk+ykÄܱ»x+yÕû³ý | |
C£® | ¼ÙÉèn=2k+1£¨k¡ÊN*£©Ê±ÃüÌâ³ÉÁ¢£¬¼´x2k+1+y2k+1Äܱ»x+yÕû³ý | |
D£® | ¼ÙÉèn=2k-1£¨k¡ÊN*£©Ê±ÃüÌâ³ÉÁ¢£¬¼´x2k-1+y2k-1Äܱ»x+yÕû³ý |
A£® | M2¡Ý2n+1 | B£® | µ±n¡Ý2ʱ£¬2M¡Ý4n-2 | C£® | M2¡Ý2n+1 | D£® | µ±n¡Ý3ʱ£¬2M¡Ý2n+2 |