题目内容
函数f(x)=sinx(1-2sin2
)+cosxsinθ(0<θ<π)在x=π得最小值.
(Ⅰ)求θ的值;
(Ⅱ)在△ABC中,a,b,c别是角A,B,C的对边,已知α=1,b=
,f(A)=
,求角C.
θ |
2 |
(Ⅰ)求θ的值;
(Ⅱ)在△ABC中,a,b,c别是角A,B,C的对边,已知α=1,b=
3 |
| ||
2 |
(Ⅰ)f(x)=sinxcosθ+cosxsinθ=sin(x+θ),
∵f(x)在x=π得最小值,即f(π)=sin(π+θ)=-sinθ=-1,且0<θ<π,
∴θ=
;
(Ⅱ)根据第一问及f(A)=
得:f(A)=sin(A+
)=
,
∴A+
=
(不合题意,舍去)或A+
=
,即A=
,
∵a=1,b=
,
∴由正弦定理
=
得:sinB=
=
=
,
∴B=
或B=
,
则C=
或
.
∵f(x)在x=π得最小值,即f(π)=sin(π+θ)=-sinθ=-1,且0<θ<π,
∴θ=
π |
2 |
(Ⅱ)根据第一问及f(A)=
| ||
2 |
π |
2 |
| ||
2 |
∴A+
π |
2 |
π |
3 |
π |
2 |
2π |
3 |
π |
6 |
∵a=1,b=
3 |
∴由正弦定理
a |
sinA |
b |
sinB |
bsinA |
a |
| ||||
1 |
| ||
2 |
∴B=
π |
3 |
2π |
3 |
则C=
π |
2 |
π |
6 |
练习册系列答案
相关题目