题目内容
8.解不等式:$\sqrt{x+27}$-x+3>0.分析 原不等式即为$\sqrt{x+27}$>x-3,即有$\left\{\begin{array}{l}{x+27≥0}\\{x-3≤0}\end{array}\right.$或$\left\{\begin{array}{l}{x+27≥0}\\{x-3>0}\\{x+27>{x}^{2}-6x+9}\end{array}\right.$,由一次不等式和二次不等式的解法,即可得到解集.
解答 解:$\sqrt{x+27}$-x+3>0即为
$\sqrt{x+27}$>x-3,
即有$\left\{\begin{array}{l}{x+27≥0}\\{x-3≤0}\end{array}\right.$或$\left\{\begin{array}{l}{x+27≥0}\\{x-3>0}\\{x+27>{x}^{2}-6x+9}\end{array}\right.$,
即为$\left\{\begin{array}{l}{x≥-27}\\{x≤3}\end{array}\right.$或$\left\{\begin{array}{l}{x≥-27}\\{x>3}\\{-2<x<9}\end{array}\right.$,
则-27≤x≤3或3<x<9,
故解集为[-27,9).
点评 本题考查根式不等式的解法,注意等价变形,运用分类讨论的思想方法是解题的关键.
练习册系列答案
相关题目