题目内容

(本题满分15分)

在平面内,已知椭圆的两个焦点为,椭圆的离心率为 ,点是椭圆上任意一点, 且

(1)求椭圆的标准方程;

(2)以椭圆的上顶点为直角顶点作椭圆的内接等腰直角三角形,这样的等腰直角三角形是否存在?若存在请说明有几个、并求出直角边所在直线方程?若不存在,请说明理由.

 

【答案】

(1)  (2)

【解析】

试题分析:解:(1)由题意得 

方程为:                                  ---------------------5分

(2)设的直线方程为设,(不妨设

   ----------------------7分

 

,即,即

所以,存在3个等腰直角三角形。

直角边所在直线方程为        ………15分

注:求出的给2分

考点:本试题考查了椭圆的知识,直线与椭圆的位置关系 。

点评:解决该试题的关键是熟练运用椭圆的性质得到a,b,c的关系,进而得到其方程,同时联立方程组,结合韦达定理来求解探索性问题,属于中档题。

 

练习册系列答案
相关题目

((本题满分15分)
某有奖销售将商品的售价提高120元后允许顾客有3次抽奖的机会,每次抽奖的方法是在已经设置并打开了程序的电脑上按“Enter”键,电脑将随机产生一个                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        1~6的整数数作为号码,若该号码是3的倍数则顾客获奖,每次中奖的奖金为100元,运用所学的知识说明这样的活动对商家是否有利。

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网