题目内容

如图,已知边长都为1正方形ABCD与正方形ABEF,∠DAF=90°,M,N分别是对角线AC和BF上的点,且AM=FN=a(0<a<
2
)

(1)求证:MN∥平面BCE;
(2)求MN的最小值.
分析:(1)过M作MP⊥AB,垂足为P,连接PN,由平行线分线段成比例定理,我们易得到PN∥AF,由面面平行的判定定理可得平面MPN∥平面CBE,再由面面平行的性质,即可得到MN∥平面BCE;
(2)由已知中边长都为1正方形ABCD与正方形ABEF,∠DAF=90°,AM=FN=a(0<a<
2
)
,根据勾股定理,我们易得MN2=a2-
2
a+1
,根据二次函数的性质,易得到MN的最小值.
解答:解:精英家教网(1)证明:过M作MP⊥AB,垂足为P,连接PN.
AM
MC
=
AP
PB
,又
AM
MC
=
FN
NB

AP
PB
=
FN
NB
[(2分)]
∴PN∥AF
∴平面MPN∥平面CBE[(4分)]
从而MN∥平面BCE[(6分)]
 (2)∠MPN=90°MP=
2
2
a,PN=1-
2
2
a
[(8分)]
由勾股定理知:MN2=MP2+PN2=a2-
2
a+1=(a-
2
2
)2+
1
2
[(10分)]
a=
2
2
a
时,MN的最小值为
2
2
.[(12分)]
点评:本题考查的知识点是直线与平面平行的判定,空间中两点之间的距离运算,其中(1)中,根据线面平行的判定定理证明有较大的难度,故采用先证面面平行,再由面面平行的性质得到线面平行,(2)的关键是将空间两点间的距离表示成a的函数,进而转化成求函数最值的问题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网