ÌâÄ¿ÄÚÈÝ
º¯Êýf£¨x£©µÄ¶¨ÒåÓòΪM£¬Èô´æÔÚ±ÕÇø¼ä[a£¬b]⊆M£¬Ê¹µÃº¯Êýf£¨x£©Âú×㣺¢Ùf£¨x£©ÔÚ[a£¬b]ÄÚÊǵ¥µ÷º¯Êý£»¢Úf£¨x£©ÔÚ[a£¬b]ÉϵÄÖµÓòΪ[2a£¬2b]£¬Ôò³ÆÇø¼ä[a£¬b]Ϊy=f£¨x£©µÄ¡°±¶ÖµÇø¼ä¡±£®ÏÂÁк¯ÊýÖдæÔÚ¡°±¶ÖµÇø¼ä¡±µÄÓУ¨¡¡¡¡£©
¢Ùf£¨x£©=x2£¨x¡Ý0£©£» ¢Úf£¨x£©=ex-1£¨x¡ÊR£©£»
¢Ûf(x)=
(x¡Ý0)£» ¢Üf(x)=loga(ax-
)(a£¾0£¬a¡Ù1)£®
¢Ùf£¨x£©=x2£¨x¡Ý0£©£» ¢Úf£¨x£©=ex-1£¨x¡ÊR£©£»
¢Ûf(x)=
4x |
x2+1 |
1 |
8 |
·ÖÎö£ºÓÉиÅÄî¡°±¶ÖµÇø¼ä¡±µÄ¶¨Òå¿ÉÒÔ¿´³ö£ºÈôÇø¼ä[a£¬b]Ϊy=f£¨x£©µÄ¡°±¶ÖµÇø¼ä¡±£¬³ýÁËa£¬bÂú×㶨ÒåÖеĢ٢ÚÁ½¸öÌõ¼þÍ⣬a£¬b±ØÊÇ·½³Ìf£¨x£©=2xµÄÁ½¸ö²»Í¬½â£®
¢ÙÒ×Öª£ºº¯Êýf£¨x£©=x2ÔÚx¡Ý0ʱµ¥µ÷µÝÔö£¬Áîx2=2x£¬½âµÃx=0»ò2£¬¾ÑéÖ¤Çø¼ä[0£¬2]ÊǺ¯Êýf£¨x£©=x2µÄ±¶ÖµÇø¼ä£»
¢ÚÒ×Öªº¯Êýµ¥µ÷µÝÔö£¬Áîex-1=2x£¬ÔÙÁîg£¨x£©=ex-2x-1£¬Çóµ¼µÃg£¨x£©ÔÚ£¨0£¬ln2£©µÝ¼õ£¬ÔÚ£¨ln2£¬+¡Þ£©µÝÔö£¬¹ÊÔÚx=ln2ʱg£¨x£©È¡µÃ×îСֵg£¨ln2£©=2-1-2ln2=1-ln4£¼0£¬ÓÖg£¨2£©=e22-5£¾0£¬g£¨1£©=e-3£¼0£¬ËùÒÔex-1=2xÓÐÁ½½â0Óëb£¬ÆäÖÐbÂú×ã1£¼b£¼2ÇÒeb-2b-=0£¬Âú×ãÌâÒ⣻
¢ÛÓÉ
=2x(x¡Ý0)⇒x=0»ò1£¬²¢ÇÒº¯Êýf(x)=
ÔÚ[0£¬1]Éϵ¥µ÷µÝÔö£¬Âú×ãÌâÒ⣻
¢ÜÊ×ÏÈax£¾
£¬Áîloga(ax-
)=2x(²»·ÁÈ¡a£¾1)£¬Ôòa2x-ax+
=0£¬½âµÃax=
£¾
£¬ÔòÔÚa£¾1ʱ£¬Çø¼ä[
£¬
]Âú×ãÌâÒ⣮
¢ÙÒ×Öª£ºº¯Êýf£¨x£©=x2ÔÚx¡Ý0ʱµ¥µ÷µÝÔö£¬Áîx2=2x£¬½âµÃx=0»ò2£¬¾ÑéÖ¤Çø¼ä[0£¬2]ÊǺ¯Êýf£¨x£©=x2µÄ±¶ÖµÇø¼ä£»
¢ÚÒ×Öªº¯Êýµ¥µ÷µÝÔö£¬Áîex-1=2x£¬ÔÙÁîg£¨x£©=ex-2x-1£¬Çóµ¼µÃg£¨x£©ÔÚ£¨0£¬ln2£©µÝ¼õ£¬ÔÚ£¨ln2£¬+¡Þ£©µÝÔö£¬¹ÊÔÚx=ln2ʱg£¨x£©È¡µÃ×îСֵg£¨ln2£©=2-1-2ln2=1-ln4£¼0£¬ÓÖg£¨2£©=e22-5£¾0£¬g£¨1£©=e-3£¼0£¬ËùÒÔex-1=2xÓÐÁ½½â0Óëb£¬ÆäÖÐbÂú×ã1£¼b£¼2ÇÒeb-2b-=0£¬Âú×ãÌâÒ⣻
¢ÛÓÉ
4x |
x2+1 |
4x |
x2+1 |
¢ÜÊ×ÏÈax£¾
1 |
8 |
1 |
8 |
1 |
8 |
2¡À
| ||
4 |
1 |
8 |
2-
| ||
4 |
2+
| ||
4 |
½â´ð£º½â£º¢ÙÓɶþ´Îº¯ÊýµÄµ¥µ÷ÐÔÖªµÀ£ºº¯Êýf£¨x£©=x2ÔÚx¡Ý0ʱµ¥µ÷µÝÔö£¬Áîx2=2x£¬½âµÃx=0»ò2£¬f£¨x£©ÔÚÇø¼ä[0£¬2]ÉϵÄÖµÓòΪ[0£¬4]£®
ÓÉ´Ë¿ÉÖª£ºÇø¼ä[0£¬2]ÊǺ¯Êýf£¨x£©=x2µÄ±¶ÖµÇø¼ä£®
¢ÚÓÉÓÚº¯Êýy=exÔÚRÉϵ¥µ÷µÝÔö£¬ËùÒÔf£¨x£©=ex-1ÔÚRÉϵ¥µ÷µÝÔö£®
Áîex-1=2x£¬ÔÙÁîg£¨x£©=ex-2x-1£¬Çóµ¼µÃg¡ä£¨x£©=ex-2£¬Áîex-2=0£¬½âµÃx=ln2£®
¾Åжϵõ½£ºg£¨x£©ÔÚ£¨0£¬ln2£©µÝ¼õ£¬ÔÚ£¨ln2£¬+¡Þ£©µÝÔö£¬¹ÊÔÚx=ln2ʱ£¬g£¨x£©È¡µÃ×îСֵg£¨ln2£©=2-1-2ln2=1-ln4£¼0£¬
ÓÖg£¨2£©=e2-5£¾0£¬g£¨1£©=e-3£¼0£¬ËùÒÔex-1=2xÓÐÁ½½â0Óëb£¬ÆäÖÐbÂú×ã1£¼b£¼2ÇÒeb-2b-1=0£®
¿ÉÖª£ºf£¨0£©=0£¬f£¨b£©=2b£¬Âú×ãÌâÒ⣬ËùÒÔÇø¼ä[0£¬b]ÊǺ¯Êýf£¨x£©=ex-1µÄ±¶ÖµÇø¼ä£®
¢ÛÓÉ
=2x½âµÃx=0»ò1£»ÓÖµ±0¡Üx¡Ü1ʱ£¬f¡ä(x)=
¡Ü0£¬ËùÒÔº¯Êýf£¨x£©ÔÚÇø¼ä[0£¬1]Éϵ¥µ÷µÝ¼õ£¬ËùÒÔÇø¼ä[0£¬1]ÊǺ¯Êýf£¨x£©µÄ±¶ÖµÇø¼ä£®
¢ÜҪʹº¯Êýf£¨x£©ÓÐÒâÒ壬ÔòÂú×ãax£¾
£¬È¡a£¾1£¬Áîloga(ax-
)=2x£¬Ôòa2x-ax+
=0£¬½âµÃax=
£¾
£®
ÓÉÓÚº¯Êýy=logaxÔÚx£¾0ʱµ¥µ÷µÝÔö£¬ËùÒÔµ±a£¾1ʱ£¬º¯Êýf£¨x£©ÔÚÇø¼ä[
£¬
]Éϵ¥µ÷µÝÔö£¬ËùÒÔÇø¼ä[
£¬
]ÊǺ¯Êýf£¨x£©µÄ±¶ÖµÇø¼ä£®
×ÛÉÏ¿ÉÖª¢Ù¢Ú¢Û¢Ü½ÔÕýÈ·£®
¹ÊÑ¡A£®
ÓÉ´Ë¿ÉÖª£ºÇø¼ä[0£¬2]ÊǺ¯Êýf£¨x£©=x2µÄ±¶ÖµÇø¼ä£®
¢ÚÓÉÓÚº¯Êýy=exÔÚRÉϵ¥µ÷µÝÔö£¬ËùÒÔf£¨x£©=ex-1ÔÚRÉϵ¥µ÷µÝÔö£®
Áîex-1=2x£¬ÔÙÁîg£¨x£©=ex-2x-1£¬Çóµ¼µÃg¡ä£¨x£©=ex-2£¬Áîex-2=0£¬½âµÃx=ln2£®
¾Åжϵõ½£ºg£¨x£©ÔÚ£¨0£¬ln2£©µÝ¼õ£¬ÔÚ£¨ln2£¬+¡Þ£©µÝÔö£¬¹ÊÔÚx=ln2ʱ£¬g£¨x£©È¡µÃ×îСֵg£¨ln2£©=2-1-2ln2=1-ln4£¼0£¬
ÓÖg£¨2£©=e2-5£¾0£¬g£¨1£©=e-3£¼0£¬ËùÒÔex-1=2xÓÐÁ½½â0Óëb£¬ÆäÖÐbÂú×ã1£¼b£¼2ÇÒeb-2b-1=0£®
¿ÉÖª£ºf£¨0£©=0£¬f£¨b£©=2b£¬Âú×ãÌâÒ⣬ËùÒÔÇø¼ä[0£¬b]ÊǺ¯Êýf£¨x£©=ex-1µÄ±¶ÖµÇø¼ä£®
¢ÛÓÉ
4x |
x2+1 |
4(1-x)(1+x) |
(x2+1)2 |
¢ÜҪʹº¯Êýf£¨x£©ÓÐÒâÒ壬ÔòÂú×ãax£¾
1 |
8 |
1 |
8 |
1 |
8 |
2¡À
| ||
4 |
1 |
8 |
ÓÉÓÚº¯Êýy=logaxÔÚx£¾0ʱµ¥µ÷µÝÔö£¬ËùÒÔµ±a£¾1ʱ£¬º¯Êýf£¨x£©ÔÚÇø¼ä[
2-
| ||
4 |
2+
| ||
4 |
2-
| ||
4 |
2+
| ||
4 |
×ÛÉÏ¿ÉÖª¢Ù¢Ú¢Û¢Ü½ÔÕýÈ·£®
¹ÊÑ¡A£®
µãÆÀ£º¿¼²éж¨Ò壬ÒÔ¼°¶þ´Îº¯Êý¡¢Ö¸Êýº¯Êý¡¢¶ÔÊýº¯Êý¡¢·Öʽº¯ÊýµÈµÄµ¥µ÷ÐÔÓëÖµÓòÎÊÌ⣮ÁíÍ⻹¿¼²éÁ˺¯ÊýµÄÁãµãµÄÅжϼ°ÊýÐνáºÏµÄ˼Ïë·½·¨£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
Èôº¯Êýf£¨x£©µÄ¶¨ÒåÓòΪ[-1£¬2]£¬Ôòº¯Êý
µÄ¶¨ÒåÓòΪ£¨¡¡¡¡£©
f(x+2) |
x |
A¡¢[-1£¬0£©¡È£¨0£¬2] |
B¡¢[-3£¬0£© |
C¡¢[1£¬4] |
D¡¢£¨0£¬2] |