题目内容

【题目】定义在R上的函数f(x)满足:f(1)=1,且对于任意的x∈R,都有f′(x)< ,则不等式f(log2x)> 的解集为

【答案】(0,2)
【解析】解:设g(x)=f(x)﹣ x,

∵f′(x)<

∴g′(x)=f′(x)﹣ <0,

∴g(x)为减函数,又f(1)=1,

∴f(log2x)> = log2x+

即g(log2x)=f(log2x)﹣ log2x> =g(1)=f(1)﹣ =g(log22),

∴log2x<log22,又y=log2x为底数是2的增函数,

∴0<x<2,

则不等式f(log2x)> 的解集为(0,2).

所以答案是:(0,2)

【考点精析】认真审题,首先需要了解对数函数的单调性与特殊点(过定点(1,0),即x=1时,y=0;a>1时在(0,+∞)上是增函数;0>a>1时在(0,+∞)上是减函数).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网