题目内容
【题目】已知三棱柱ABC﹣A1B1C1的侧棱与底面垂直,体积为 ,底面是边长为 的正三角形,若P为底面A1B1C1的中心,则PA与平面A1B1C1所成角的大小为( )
A.
B.
C.
D.
【答案】B
【解析】解:如图所示,
∵AA1⊥底面A1B1C1 , ∴∠APA1为PA与平面A1B1C1所成角,
∵平面ABC∥平面A1B1C1 , ∴∠APA1为PA与平面ABC所成角.
∵ = = .
∴V三棱柱ABC﹣A1B1C1= = ,解得 .
又P为底面正三角形A1B1C1的中心,∴ = =1,
在Rt△AA1P中, ,
∴ .
故选B.
【考点精析】通过灵活运用空间角的异面直线所成的角,掌握已知为两异面直线,A,C与B,D分别是上的任意两点,所成的角为,则即可以解答此题.
练习册系列答案
相关题目
【题目】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费(单位:万元)对年销售量(单位:)的影响,对近年的年宣传费和年销售量作了初步统计和处理,得到的数据如下:
年宣传费(单位:万元) | ||||
年销售量(单位:) |
,.
(1)在给定的坐标系中画出表中数据的散点图;
(2)求出关于的线性回归方程;
(3)若公司计划下一年度投入宣传费万元,试预测年销售量的值.
参考公式