题目内容

【题目】已知三棱柱ABC﹣A1B1C1的侧棱与底面垂直,体积为 ,底面是边长为 的正三角形,若P为底面A1B1C1的中心,则PA与平面A1B1C1所成角的大小为( )
A.
B.
C.
D.

【答案】B
【解析】解:如图所示,
∵AA1⊥底面A1B1C1 , ∴∠APA1为PA与平面A1B1C1所成角,
∵平面ABC∥平面A1B1C1 , ∴∠APA1为PA与平面ABC所成角.
= =
∴V三棱柱ABCA1B1C1= = ,解得
又P为底面正三角形A1B1C1的中心,∴ = =1,
在Rt△AA1P中,

故选B.

【考点精析】通过灵活运用空间角的异面直线所成的角,掌握已知为两异面直线,A,C与B,D分别是上的任意两点,所成的角为,则即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网