题目内容
已知等差数列
(
N+)中,
,
,
.
(Ⅰ)求数列
的通项公式;
(Ⅱ)若将数列
的项重新组合,得到新数列
,具体方法如下:
,
,
,
,…,依此类推,
第
项
由相应的
中
项的和组成,求数列
的前
项和
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212617992480.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212618007360.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212618023494.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212618038601.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212618054593.png)
(Ⅰ)求数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212617992480.png)
(Ⅱ)若将数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212617992480.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212618257487.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212618288441.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212618304555.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212618335727.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212618366792.png)
第
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212618382297.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212618397365.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212617992480.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212618444392.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212618460704.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212618382297.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212618631373.png)
(1)
;
(2)
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212618647899.png)
(2)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232126186782101.png)
(1)由等差数列的性质得
,又
,
,解得
利用等差数列的通项公式得
;(2)根据数列
与新数列
的关系转化为求等差数列的和得
,所以
,由等比数列求和公式得
。
解:(Ⅰ)由
与![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212618709728.png)
解得:
或
(由于
,舍去)
设公差为
,则
,解得
所以数列
的通项公式为
……………………………………4分
(Ⅱ)由题意得:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232126193801002.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232126194111689.png)
…………………………6分
而
是首项为
,公差为
的等差数列的前
项的和,所以![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232126196451067.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232126197231472.png)
所以
………………………………10分
所以![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212619052854.png)
所以
……………………12分
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212618709728.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212618023494.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212618038601.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212618787819.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212618647899.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212617992480.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212618257487.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212619037885.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212619052854.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232126190681428.png)
解:(Ⅰ)由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212618038601.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212618709728.png)
解得:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212618787819.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212619130818.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212618023494.png)
设公差为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212619146321.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232126191621129.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212619208740.png)
所以数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212617992480.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212618647899.png)
(Ⅱ)由题意得:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232126193801002.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232126194111689.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232126195051588.png)
而
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232126196451067.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212619661291.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212619676287.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212618444392.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232126196451067.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232126197231472.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232126197391460.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212619052854.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232126199422119.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目