题目内容
.(本小题满分13分)
如图,椭圆 (a>b>0)的上、下顶点分别为A、B,已知点B在直线l:y=-1上,且椭圆的离心率e =.(Ⅰ)求椭圆的标准方程;
(Ⅱ)设P是椭圆上异于A、B的任意一点,PQ⊥y轴,Q为垂足,M为线段PQ中点,直线AM交直线l于点C,N为线段BC的中点,求证:OM⊥MN
【答案】
解:(Ⅰ)依题意,得. ······················· 1分
∵,,∴.················· 3分
∴椭圆的标准方程为.······················ 4分
(Ⅱ)(法一)
证明:设,,
则,且.
∵为线段中点, ∴.··················· 5分
又,∴直线的方程为.
令,得. ······················· 8分
又,为线段的中点,∴.············ 9分
∴. ······················ 10分
∴
=.··············· 12分
∴.······························ 13分
(法二)同(法一)得: ,.··········· 9分
当时,,
此时,
∴,不存在,∴.
···································· 10分
当时,,
,
∵,∴ ······················ 12分
综上得.···························· 13分
【解析】略
练习册系列答案
相关题目