题目内容

.(本小题满分13分)

如图,椭圆 (a>b>0)的上、下顶点分别为A、B,已知点B在直线l:y=-1上,且椭圆的离心率e =.(Ⅰ)求椭圆的标准方程;

(Ⅱ)设P是椭圆上异于A、B的任意一点,PQ⊥y轴,Q为垂足,M为线段PQ中点,直线AM交直线l于点C,N为线段BC的中点,求证:OM⊥MN

 

 

 

【答案】

 

解:(Ⅰ)依题意,得. ······················· 1分

,∴.················· 3分

∴椭圆的标准方程为.······················ 4分

(Ⅱ)(法一)

证明:设

,且

为线段中点,  ∴.··················· 5分

,∴直线的方程为

,得.  ······················· 8分

为线段的中点,∴.············ 9分

. ······················ 10分

=.··············· 12分

.······························ 13分

(法二)同(法一)得: .··········· 9分

时,

此时

不存在,∴

···································· 10分

时,

,∴ ······················ 12分

综上得.···························· 13分

 

【解析】略

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网