题目内容
已知等差数列{an}的前n项和为Sn,若m>1,且am-1+am+1-am2=0,S2m-1=38,则m等于( )
A.38 | B.20 | C.10 | D.9 |
根据等差数列的性质可得:am-1+am+1=2am,
则am-1+am+1-am2=am(2-am)=0,
解得:am=0或am=2,
若am等于0,显然S2m-1=
=(2m-1)am=38不成立,故有am=2,
∴S2m-1=(2m-1)am=4m-2=38,
解得m=10.
故选C
则am-1+am+1-am2=am(2-am)=0,
解得:am=0或am=2,
若am等于0,显然S2m-1=
(2m-1)(a1+a2m-1) |
2 |
=(2m-1)am=38不成立,故有am=2,
∴S2m-1=(2m-1)am=4m-2=38,
解得m=10.
故选C
练习册系列答案
相关题目