题目内容

已知抛物线y2 =4x的焦点为F,准线为交于A,B两点,若△FAB为直角三角形,则双曲线的离心率是

A.B.C.2D.

B

解析试题分析:先根据抛物线方程求得准线方程,代入双曲线方程求得y,根据双曲线的对称性可知△FAB为等腰直角三角形,进而可求得A或B的纵坐标为2,进而求得a,利用a,b和c的关系求得c,则双曲线的离心率可得. 解:依题意知抛物线的准线x=-1.代入双曲线方程得 ,不妨设A(-1,) ∵△FAB是等腰直角三角形,=2,得到a=,∴c2=a2+b2=那么可知离心率为,选B.
考点:双曲线的简单性质
点评:本题主要考查了双曲线的简单性质.解题的关键是通过双曲线的对称性质判断出△FAB为等腰直角三角形

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网