题目内容
如图,在三棱锥
中,
,
,
,设顶点A在底面
上的射影为R.
(Ⅰ)求证:
;
(Ⅱ)设点
在棱
上,且
,试求二面角
的余弦值.![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240207001714183.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020659953547.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020659968963.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020659984626.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020700000606.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020700078460.png)
(Ⅰ)求证:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020700093589.png)
(Ⅱ)设点
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020700093324.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020700109408.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020700124602.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020700156598.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240207001714183.png)
(Ⅰ)见解析;(Ⅱ)
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020700187457.png)
试题分析:(Ⅰ)借助几何体的中线面垂直,证明BCDE为正方形,达到证明线线垂直的目的;(Ⅱ)方法一利用定义法做出二面角,通过解三角形求解二面角的平面角;方法二建立利用空间向量法,通过两个半平面的法向量借助夹角公式求解.
试题解析:证明:方法一:由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020700202428.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020700218456.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020700202428.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020700234405.png)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020700249416.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020700234405.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020700280429.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020700296473.png)
故
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020700312553.png)
同理可得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020700327539.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020700343537.png)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020700358513.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020700343537.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020700390580.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240207004054034.png)
方法二:由已知可得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020700421791.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020700436292.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020700452374.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020700468690.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020700483404.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020700499466.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020700530476.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020700499466.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020700561300.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020700218456.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020700577318.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020700592377.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020700390580.png)
(Ⅱ)方法一:由(I)的证明过程知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020700624405.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020700639488.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020700436292.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020700686580.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020700686302.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020700702596.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020700717508.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020700733583.png)
由已知可得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020700748509.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020700764710.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020700780599.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020700795861.png)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020700811584.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020700826584.png)
故
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020700842893.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020700733583.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020700187457.png)
方法二: 由(I)的证明过程知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020700343537.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/2014082402070090410617.png)
则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020700920567.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020700936588.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020700951595.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020700967583.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020700982596.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020700998636.png)
则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020701014739.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020701029757.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020701045486.png)
的一个法向量为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020701060714.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020701076489.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020701107668.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020701107935.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020701123653.png)
则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240207011381257.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020700733583.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020701170471.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目