题目内容
20.春节期间,某微信群主发60个随机红包(即每个人抢到的红包中的钱数是随机的,且每人只能抢一个),红包被一抢而空,后据统计,60个红包中钱数(单位:元)分配如下频率分布直方图所示(其分组区间为[0,1),[1,2),[2,3),[3,4),[4,5)).(1)试估计该群中某成员抢到钱数不小于3元的概率;
(2)若该群中成员甲、乙两人都抢到4.5元红包,现系统将从抢到4元及以上红包的人中随机抽取2人给群中每个人拜年,求甲、乙两人至少有一人被选中的概率.
分析 (1)根据频率分布直方图,求出不小于3的频率是多少即可;
(2)利用列举法计算基本事件数以及对应的概率是多少.
解答 解:(1)根据频率分布直方图,得;
该群中抢到红包的钱数不小于3元的频率是
1-0.05-0.20-0.40=0.35,
∴估计该群中某成员抢到钱数不小于3元的概率是0.35;
(2)该群中抢到钱数不小于4元的频率为0.10,对应的人数是60×0.10=6,
记为1、2、3、4、甲、乙;
现从这6人中随机抽取2人,基本事件数是12,13,14,1甲,1乙,
23,24,2甲,2乙,34,3甲,3乙,4甲,4乙,甲乙共15种;
其中甲乙两人至少有一人被选中的基本事件为
1甲,1乙,2甲,2乙,3甲,3乙,4甲,4乙,甲乙共9种;
∴对应的概率为P=$\frac{9}{15}$=$\frac{3}{5}$.
点评 本题考查了频率分布直方图的应用问题,也考查了用列举法求古典概型的概率问题,是基础题目.
练习册系列答案
相关题目
10.已知椭圆的焦点在x轴上,短轴长为2,离心率为$\frac{\sqrt{3}}{2}$,直线l:y=-2,任取椭圆上一点P(异于短轴端点M,N)直线MP,NP分别交直线l于点T,S,则|ST|的最小值是( )
A. | 2$\sqrt{3}$ | B. | 4$\sqrt{2}$ | C. | 4$\sqrt{3}$ | D. | 8$\sqrt{2}$ |
5.某市为了节约能源,拟出台“阶梯电价”制度,即制定住户月用电量的临界值a,若某住户某月用电量不超过a度,则按平价计费;若某月用电量超过a度,则超出部分按议价计费.未超出分布按平价计费.为确定a的值,随机调查了该市100户的月用电量,工作人员已将90户的用电量填在了下面的频率分布表中,最后10户的月用电量(单位:度)为:18 63 43 119 65 77 29 97 52 100
(Ⅰ)完成频率分布表并绘制频率分布直方图;
(Ⅱ)根据已有信息,试估计全市住户的平均用电量(同一组数据用该区间的中点值作代表);
(Ⅲ)若该市计划让全市75%的住户在“阶梯电价”出台前后缴纳的电费不变,试求临界值a.
组别 | 月用电量 | 频数统计 | 频数 | 频率 |
1 | [0,20) | |||
2 | [20,40) | 正正一 | ||
3 | [40,60) | 正正正正 | ||
4 | [60,80) | 正正正正正 | ||
5 | [80,100) | 正正正正 | ||
6 | [100,120) |
(Ⅱ)根据已有信息,试估计全市住户的平均用电量(同一组数据用该区间的中点值作代表);
(Ⅲ)若该市计划让全市75%的住户在“阶梯电价”出台前后缴纳的电费不变,试求临界值a.