题目内容
已知椭圆具有性质:若是椭圆:且为常数上关于原点对称的两点,点是椭圆上的任意一点,若直线和的斜率都存在,并分别记为,,那么.类比双曲线且为常数中,若是双曲线且为常数上关于原点对称的两点,点是双曲线上的任意一点,若直线和的斜率都存在,并分别记为,,那么 .
解析试题分析:椭圆两直线斜率乘积为负值,双曲线两直线斜率乘积为正值,由类比推理知:.
考点:推理与证明.
练习册系列答案
相关题目
在平面上,若两个正三角形的边长比为1:2.则它们的面积之比为1:4.类似地,在空间中,若两个正四面体的棱长比为1:2,则它们的体积比为( )
A.1:2 | B.1:4 | C.1:6 | D.1:8 |