题目内容

设椭圆的左、右顶点分别为,点在椭圆上且异于两点,为坐标原点.
(Ⅰ)若直线的斜率之积为,求椭圆的离心率;
(Ⅱ)若,证明直线的斜率 满足
(1)     (2)
【考点定位】本小题主要考查椭圆的标准方程和几何性质、直线的方程、平面内两点间的距离公式等基础知识.考查用代数方法研究圆锥曲线的性质,以及数形结合的数学思想方法.考查运算求解能力、综合分析和解决问题的能力
(1)解:设点P的坐标为.由题意,有 ①
,得
,可得,代入①并整理得
由于,故.于是,所以椭圆的离心率
(2)证明:(方法一)
依题意,直线OP的方程为,设点P的坐标为.
由条件得消去并整理得 ②

.
整理得.而,于是,代入②,
整理得
,故,因此.
所以.
(方法二)
依题意,直线OP的方程为,设点P的坐标为.
由P在椭圆上,有
因为,所以,即  ③
,得整理得.
于是,代入③,
整理得
解得
所以.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网