题目内容
10.已知集合A={x|-1≤x≤3},B={x|x<2},那么集合A∩B={x|-1≤x<2}.分析 由A与B,求出两集合的交集即可.
解答 解:∵A={x|-1≤x≤3},B={x|x<2},
∴A∩B={x|-1≤x<2},
故答案为:{x|-1≤x<2}.
点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.
练习册系列答案
相关题目
20.若圆x2+y2+2kx+2y+2=0(k>0)与两坐标轴无公共点,那么实数k的取值范围是( )
A. | 0<k<$\sqrt{2}$ | B. | 1<k<$\sqrt{2}$ | C. | 0<k<1 | D. | k>$\sqrt{2}$ |
18.已知i是虚数单位,复数$\overline{Z}$=|1-$\sqrt{3}$i|($\sqrt{3}$-i),$\overline{Z}$是Z的共轭复数,则Z的虚部为( )
A. | 4 | B. | -4 | C. | 2 | D. | -2 |
2.在数列{an}中,a1=1,a2=$\frac{1}{4}$,若{$\frac{1}{{a}_{n}}$}等差数列,则数列{an}的第10项为( )
A. | $\frac{1}{22}$ | B. | $\frac{1}{25}$ | C. | $\frac{1}{28}$ | D. | $\frac{1}{31}$ |