题目内容
18.$\underset{lim}{x→∞}$(1-$\frac{1}{{x}^{2}}$)${\;}^{3{x}^{2}}$.分析 令x2=t,则$\underset{lim}{x→∞}$(1-$\frac{1}{{x}^{2}}$)${\;}^{3{x}^{2}}$=$\underset{lim}{t→+∞}$$(1-\frac{1}{t})^{3t}$=${e}^{\underset{lim}{t→+∞}ln(1-\frac{1}{t})^{3t}}$,从而求$\underset{lim}{t→+∞}$ln$(1-\frac{1}{t})^{3t}$即可.
解答 解:令x2=t,则
$\underset{lim}{x→∞}$(1-$\frac{1}{{x}^{2}}$)${\;}^{3{x}^{2}}$
=$\underset{lim}{t→+∞}$$(1-\frac{1}{t})^{3t}$
=${e}^{\underset{lim}{t→+∞}ln(1-\frac{1}{t})^{3t}}$,
∵$\underset{lim}{t→+∞}$ln$(1-\frac{1}{t})^{3t}$=$\underset{lim}{t→+∞}$$\frac{ln(1-\frac{1}{t})}{\frac{1}{3t}}$
=$\underset{lim}{t→+∞}$$\frac{\frac{1}{{t}^{2}}}{-\frac{1}{3}\frac{1}{{t}^{2}}}$=-3,
故$\underset{lim}{x→∞}$(1-$\frac{1}{{x}^{2}}$)${\;}^{3{x}^{2}}$=$\underset{lim}{t→+∞}$$(1-\frac{1}{t})^{3t}$=e-3.
点评 本题考查了函数的极限的求法及应用.
练习册系列答案
相关题目
9.已知函数f(x)=e1+|x|-$\frac{1}{{1+{x^2}}}$,则使得f(x)>f(2x-1)成立的x的取值范围是( )
A. | $({\frac{1}{3},1})$ | B. | $({-∞,\frac{1}{3}})∪({1,+∞})$ | C. | (-$\frac{1}{3}$,$\frac{1}{3}$) | D. | $({-∞,-\frac{1}{3}})∪({\frac{1}{3},+∞})$ |
13.在映射f:A→B中,A=B={(x,y)|x,y∈R},且f:(x,y)→(2x-y,x+2y),则元素(1,-2)在f的作用下的原像为( )
A. | (4,-3) | B. | (-$\frac{2}{5}$,-$\frac{8}{5}$) | C. | (-$\frac{2}{5}$,$\frac{1}{5}$) | D. | (0,-1) |
8.已知直线l:2tx+(1-t2)y-4t-4=0,若对于任意t∈R,直线l与一定圆相切,则该定圆的面积为( )
A. | π | B. | 2π | C. | 3π | D. | 4π |