题目内容

8.已知max(a,b)表示a,b两数中的最大值.若f(x)=max{e|x|,e|x-2|},则f(x)的最小值为e.

分析 化简函数的解析式,讨论x的范围,由指数函数的单调性,可得最小值.

解答 解:由于f(x)=max{e|x|,e|x-2|}=$\left\{\begin{array}{l}{{e}^{x},x≥1}\\{{e}^{|x-2|},x<1}\end{array}\right.$,
当x≥1时,f(x)≥e,且当x=1时,取得最小值e;
当x<1时,f(x)>e.
故f(x)的最小值为f(1)=e.
故答案为:e.

点评 本题主要考查指数函数的单调性,分段函数的应用,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网