题目内容
函数f(x)=x3-3ax-a在(0,1)内有最小值,则a的取值范围是( )
A.0≤a<1 | B.0<a<1 | C.-1<a<1 | D.0<a<
|
∵函数f(x)=x3-3ax-a在(0,1)内有最小值,
∴f′(x)=3x2-3a=3(x2-a),
若a≤0,可得f′(x)≥0,f(x)在(0,1)上单调递增,
f(x)在x=0处取得最小值,显然不可能,
若a>0,f′(x)=0解得x=±a,
当x>a,f(x)为增函数,0<x<a为减函数,、
f(x)在x=a处取得极小值,也是最小值,
所以极小值点应该在(0,1)内,
∴0<a<1,
故选B;
∴f′(x)=3x2-3a=3(x2-a),
若a≤0,可得f′(x)≥0,f(x)在(0,1)上单调递增,
f(x)在x=0处取得最小值,显然不可能,
若a>0,f′(x)=0解得x=±a,
当x>a,f(x)为增函数,0<x<a为减函数,、
f(x)在x=a处取得极小值,也是最小值,
所以极小值点应该在(0,1)内,
∴0<a<1,
故选B;
练习册系列答案
相关题目