题目内容

10.已知f(x)是定义在R上的偶函数,其导函数为f′(x),若f′(x)<f(x),且f(x+1)=f(3-x),f(2015)=2,则不等式f(x)<2ex-1的解集为(  )
A.(-∞,$\frac{1}{e}$)B.(e,+∞)C.(-∞,0)D.(1,+∞)

分析 根据函数的奇偶性和单调性推导函数的周期性,构造函数g(x),求函数的导数,研究函数的单调性即可得到结论.

解答 解:∵函数f(x)是偶函数,
∴f(x+1)=f(3-x)=f(x-3),
∴f(x+4)=f(x),即函数是周期为4的周期函数,
∵f(2015)=f(2015-4×504)=f(-1)=f(1)=2,
∴f(1)=2,
设g(x)=$\frac{f(x)}{{e}^{x}}$,则函数的导数g′(x)=$\frac{f′(x){e}^{x}-f(x){e}^{x}}{{e}^{2x}}$=$\frac{f′(x)-f(x)}{{e}^{x}}<0$,
故函数g(x)是R上的减函数,
则不等式f(x)<2ex-1等价为$\frac{f(x)}{{e}^{x}}$$<\frac{2}{e}$,
即g(x)<g(1),
解得x>1,
即不等式的解集为(1,+∞),
故选:D

点评 本题主要考查不等式的求解,根据函数奇偶性和对称性求出函数的周期性以及构造函数,利用导数研究函数的单调性是解决本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网