题目内容
【题目】如图,在四棱锥PABCD中,PA⊥平面ABCD,∠ABC=∠BAD=90°,AD=AP=4,AB=BC=2,M为PC的中点.
(1)求异面直线AP,BM所成角的余弦值;
(2)点N在线段AD上,且AN=λ,若直线MN与平面PBC所成角的正弦值为,求λ的值.
【答案】(1).(2)1
【解析】
(1)先根据题意建立空间直角坐标系,求得向量和向量的坐标,再利用线线角的向量方法求解.
(2,由AN=λ,设N(0,λ,0)(0≤λ≤4),则=(-1,λ-1,-2),再求得平面PBC的一个法向量,利用直线MN与平面PBC所成角的正弦值为,由|cos〈,〉|===求解.
(1) 因为PA⊥平面ABCD,且AB,AD平面ABCD,所以PA⊥AB,PA⊥AD.
又因为∠BAD=90°,所以PA,AB,AD两两互相垂直.
分别以AB,AD,AP为x,y,z轴建立空间直角坐标系,
则由AD=2AB=2BC=4,PA=4可得
A(0,0,0),B(2,0,0),C(2,2,0),D(0,4,0),P(0,0,4).
又因为M为PC的中点,所以M(1,1,2).
所以=(-1,1,2),=(0,0,4),
所以cos〈,〉=
==,
所以异面直线AP,BM所成角的余弦值为.
(2) 因为AN=λ,所以N(0,λ,0)(0≤λ≤4),
则=(-1,λ-1,-2),=(0,2,0),=(2,0,-4).
设平面PBC的法向量为=(x,y,z),
则即
令x=2,解得y=0,z=1,
所以=(2,0,1)是平面PBC的一个法向量.
因为直线MN与平面PBC所成角的正弦值为,
所以|cos〈,〉|===,
解得λ=1∈[0,4],
所以λ的值为1.
练习册系列答案
相关题目