题目内容
在非直角△ABC中,向量
+
与向量
的夹角为( )
| ||
|
|
| ||
|
|
BC |
分析:计算向量
+
与向量
的数量积,得到数量积等于0,所以两向量的夹角是直角.
| ||
|
|
| ||
|
|
BC |
解答:解:∵(
+
)•
=
+
=
+
=-|
|+|
|=0
∴向量
+
与向量
垂直,
∴向量
+
与向量
的夹角为直角.
故选B
| ||
|
|
| ||
|
|
BC |
| ||||
|
|
| ||||
|
|
=
|
| ||||
|
|
|
| ||||
|
|
=-|
BC |
BC |
∴向量
| ||
|
|
| ||
|
|
BC |
∴向量
| ||
|
|
| ||
|
|
BC |
故选B
点评:本题主要考查向量的数量积的计算,计算量较大,做题时要有耐心.
练习册系列答案
相关题目