题目内容

已知是二次函数,是它的导函数,且对任意的恒成立.
(1)求的解析表达式;
(2)设,曲线在点处的切线为与坐标轴围成的三角形面积为.求的最小值.
(1)(2)
本题主要考查二次函数的概念、导数的应用等知识,以及运算求解能力.在解答过程当中,求导的能力、运算的能力、问题转换的能力以及数形结合的能力都得到了充分的体现,值得同学们体会反思.
(1)可以现设出二次函数的表达式,结合信息获得多项式相等进而利用对应系数相等解得参数,即可明确函数解析式;
(2)结合函数的解析式通过求导很容易求的在点P(t,f(t))处的切线l,由此即可表示出三角形的面积关于t的函数S(t).从而利用导函数知识即可求得函数S(t)的最小值
解:(Ⅰ)设(其中),则,    ………1分

由已知,得
,解之,得,∴. ……4分
(2)由(1)得,,切线的斜率
∴切线的方程为,即.   …………6分
从而轴的交点为轴的交点为
(其中).                         ………8分
.                 ……………10分
时,是减函数;
时,是增函数.                 ……12分
.                        …………13分
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网