题目内容

【题目】在正三棱锥S﹣ABC中,AB= ,M是SC的中点,AM⊥SB,则正三棱锥S﹣ABC外接球的球心到平面ABC的距离为

【答案】
【解析】解:取AC的中点N,连接BN,因为SA=SC,所以AC⊥SN,由∵△ABC是正三角形,∴AC⊥BN. 故AC⊥平面SBN,AC⊥BC.
又∵AM⊥SB,AC∩AM=A,∴SB⊥平面SAC,SB⊥SA且SB⊥SC
故得到SB,SA,SC是三条两两垂直的.可以看成是一个正方体切下来的一个正三棱锥.
故外接圆直径2R=
∵AB= ,∴SA=1.
那么:外接球的球心与平面ABC的距离为正方体对角线的 ,即d=
所以答案是:

【考点精析】利用棱锥的结构特征对题目进行判断即可得到答案,需要熟知侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网