题目内容
【题目】如图,在四棱锥P-ABCD 中,AB∥CD ,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD,E和F分别为CD和PC的中点.求证:
(1)BE∥平面PAD;
(2)平面BEF⊥平面PCD.
【答案】详见解析
【解析】试题分析:(1)根据条件,易证四边形是平行四边形,所以
,
平面
,
平面
,所以
平面
;
(2)由条件易证平面
,
,所以
平面
,
,根据中点,
,所以
,
,那么可证明
平面
,
平面
,根据面面垂直的判定定理,平面
平面
.
试题解析:证明:(1)因为平面PAD⊥底面ABCD,且PA垂直于这两个平面的交线AD,所以PA⊥底面ABCD.
因为AB∥CD,CD=2AB,E为CD的中点,所以AB∥DE,且AB=DE.
所以ABED为平行四边形,所以BE∥AD.
又因为平面PAD,AD
平面PAD,所以BE∥平面PAD.
(2)因为AB⊥AD,而且ABED为平行四边形,所以BE⊥CD,AD⊥CD.
由(1)知PA⊥底面ABCD,所以PA⊥CD,因为PAAD=A,
所以CD⊥平面PAD,所以CD⊥PD.
因为E和F分别是CD和PC的中点,所以PD∥EF,所以CD⊥EF.
又EFBE=E,所以CD⊥平面BEF.
所以平面BEF⊥平面PCD.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目
【题目】某校100名学生期中考试数学成绩的频率分布直方图如图,其中成绩分组区间如下:
组号 | 第一组 | 第二组 | 第三组 | 第四组 | 第五组 |
分组 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
(1)求图中a的值;
(2)根据频率分布直方图,估计这100名学生期中考试数学成绩的平均分;
(3)现用分层抽样的方法从第3、4、5组中随机抽取6名学生,将该样本看成一个总体,从中随机抽取2名,求其中恰有1人的分数不低于90分的概率?