题目内容
【题目】已知函数f(x)=的定义域为A,集合B={x|(x﹣m﹣3)(x﹣m+3)≤0}.
(1)求A和f(x)的值域C;
(2)若A∩B=[2,3],求实数m的值;
(3)若CRB,求实数m的取值范围.
【答案】解:(1)由f(x)有意义知:3+2x﹣x2≥0,得﹣1≤x≤3
又3+2x﹣x2=﹣(x﹣1)2+4≤4,
∴A=[﹣1,3],C=[0,2]
(2)由已知A=[﹣1,3],B=[m﹣3,m+3]
又A∩B=[2,3],得m﹣3=2,即m=5
经检验当m=5时,B=[2,8]满足A∩B=[2,3]∴m=5
(3)∵CRB={x|x>m+3,或x<m﹣3},C=[0,2]且CRB,
∴m+3<0或m﹣3>2,
∴m>5或m<﹣3
【解析】(1)解不等式求A,配方法求f(x)的值域C;
(2)由已知A=[﹣1,3],B=[m﹣3,m+3],A∩B=[2,3],即可求实数m的值;
(3)求出CRB={x|x>m+3,或x<m﹣3},利用CRB,即可求实数m的取值范围.
练习册系列答案
相关题目