题目内容
【题目】如图,在直三棱柱ABC-A1B1C1中,A1B1=A1C1,D,E分别是棱BC,CC1上的点(点D不同于点C),且AD⊥DE,F为B1C1的中点.
求证:(1)平面ADE⊥平面BCC1B1.
(2)直线A1F∥平面ADE.
【答案】(1)见解析;(2)见解析
【解析】试题分析:(1)由三棱柱得CC1⊥平面ABC,因此CC1⊥AD,进而可得AD⊥平面BCC1B1,根据面面垂直的判定定理可得平面ADE⊥平面BCC1B1.(2)由题意得A1F⊥B1C1,又由CC1⊥平面A1B1C1,得CC1⊥A1F,所以A1F⊥平面BCC1B1,又,AD⊥平面BCC1B1, 所以A1F∥AD,根据线面平行的判定定理可得直线A1F∥平面ADE.
试题解析:
(1)因为三棱柱ABC-A1B1C1是直三棱柱,
所以CC1⊥平面ABC,
又因为AD平面ABC,
所以CC1⊥AD.
因为AD⊥DE,CC1,DE平面BCC1B1,且CC1∩DE=E,
所以AD⊥平面BCC1B1,
又因为AD平面ADE,
所以平面ADE⊥平面BCC1B1.
(2)因为A1B1=A1C1,F为B1C1的中点,
所以A1F⊥B1C1,
又CC1⊥平面A1B1C1,且A1F平面A1B1C1,
所以CC1⊥A1F,
又因为CC1,B1C1平面BCC1B1,且CC1∩B1C1=C1,
所以A1F⊥平面BCC1B1,
由(1)知,AD⊥平面BCC1B1,
所以A1F∥AD,
又因为AD平面ADE,A1F平面ADE,
所以直线A1F∥平面ADE.
【题目】国际奥委会将于2017年9月15日在秘鲁利马召开130次会议决定2024年第33届奥运
会举办地。目前德国汉堡、美国波士顿等申办城市因市民担心赛事费用超支而相继退出。某机构为调查我国公民对申办奥运会的态度,选了某小区的100位居民调查结果统计如下:
支持 | 不支持 | 合计 | |
年龄不大于50岁 | 80 | ||
年龄大于50岁 | 10 | ||
合计 | 70 | 100 |
(1)根据已有数据,把表格数据填写完整;
(2)能否在犯错误的概率不超过5%的前提下认为不同年龄与支持申办奥运无关?
(3)已知在被调查的年龄大于50岁的支持者中有5名女性,其中2位是女教师,现从这5名女性中随机抽取3人,求至多有1位教师的概率.